Difference between revisions of "Manuals/calci/IMPOWER"
Jump to navigation
Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''IMPOWER(z,n)'''</div><br/> |
+ | *<math>z</math> is the complex number is of the form <math>x+iy</math> | ||
+ | *<math>n</math> is the power value. | ||
− | + | ==Description== | |
+ | *This function gives the value of powers of complex number. | ||
+ | *DeMoivre's Theorem is a generalized formula to compute powers of a complex number in it's polar form. | ||
+ | *i'is the imaginary unit, i=sqrt(-1). | ||
+ | *Then the power of a complex number is defined by (z)^n=(x+iy)^n=r^n*e^inθ=r^n(cosnθ+isinnθ) where r=sqrt(x^2+y^2) and θ=tan^-1(y/x), θ∈(is belongs to) (-Pi(),Pi()]. | ||
+ | *This formula is called DeMoivre's theorem of complex numbers. | ||
+ | *We can use COMPLEX function to convert real and imaginary number in to a complex number. | ||
+ | *In IMPOWER(z,n), n can be integer, fractional or negative. | ||
+ | *suppose n is nonnumeric , this function will returns the error value. | ||
− | + | ==Examples== | |
− | |||
− | |||
− | + | #IMPOWER("4+5i",3)=-235.99999+115i | |
+ | #IMPOWER("9-7i",4)=-14852-8063.999999i | ||
+ | #IMPOWER("6",9)=10077696(EXCEL)=10077696-8i(CALCI) | ||
+ | #IMPOWER("i",10)=-1-16i(CALCI)=-1+6.1257422745431E-16i | ||
− | + | *For imaginary value '0' is not accepting in CALCI. | |
− | |||
− | |||
− | + | ==See Also== | |
+ | *[[Manuals/calci/IMREAL | IMREAL ]] | ||
+ | *[[Manuals/calci/IMSUM | IMSUM ]] | ||
+ | *[[Manuals/calci/IMAGINARY | IMAGINARY ]] | ||
+ | *[[Manuals/calci/COMPLEX | COMPLEX ]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/Binary_logarithm Binary Logarithm] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 05:01, 17 December 2013
IMPOWER(z,n)
- is the complex number is of the form
- is the power value.
Description
- This function gives the value of powers of complex number.
- DeMoivre's Theorem is a generalized formula to compute powers of a complex number in it's polar form.
- i'is the imaginary unit, i=sqrt(-1).
- Then the power of a complex number is defined by (z)^n=(x+iy)^n=r^n*e^inθ=r^n(cosnθ+isinnθ) where r=sqrt(x^2+y^2) and θ=tan^-1(y/x), θ∈(is belongs to) (-Pi(),Pi()].
- This formula is called DeMoivre's theorem of complex numbers.
- We can use COMPLEX function to convert real and imaginary number in to a complex number.
- In IMPOWER(z,n), n can be integer, fractional or negative.
- suppose n is nonnumeric , this function will returns the error value.
Examples
- IMPOWER("4+5i",3)=-235.99999+115i
- IMPOWER("9-7i",4)=-14852-8063.999999i
- IMPOWER("6",9)=10077696(EXCEL)=10077696-8i(CALCI)
- IMPOWER("i",10)=-1-16i(CALCI)=-1+6.1257422745431E-16i
- For imaginary value '0' is not accepting in CALCI.
See Also