Difference between revisions of "Manuals/calci/IMPOWER"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''IMPOWER(z,n)'''</div><br/>
 +
*<math>z</math> is the complex number is of the form <math>x+iy</math>
 +
*<math>n</math> is the power value.
  
Syntax
+
==Description==
 +
*This function gives the value of powers of complex number.
 +
*DeMoivre's Theorem is a generalized formula to compute powers of a complex number in it's polar form.
 +
*i'is the imaginary unit, i=sqrt(-1).
 +
*Then the power of a complex number is defined by (z)^n=(x+iy)^n=r^n*e^inθ=r^n(cosnθ+isinnθ) where r=sqrt(x^2+y^2) and  θ=tan^-1(y/x), θ∈(is belongs to) (-Pi(),Pi()].
 +
*This formula is called DeMoivre's theorem of complex numbers.
 +
*We can use COMPLEX function to convert  real and imaginary number in to a complex number.
 +
*In IMPOWER(z,n), n can be integer, fractional or negative.
 +
*suppose n is nonnumeric , this function will returns the error value.
  
</div></div>
+
==Examples==
----
 
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
  
Remarks
+
#IMPOWER("4+5i",3)=-235.99999+115i
 +
#IMPOWER("9-7i",4)=-14852-8063.999999i
 +
#IMPOWER("6",9)=10077696(EXCEL)=10077696-8i(CALCI)
 +
#IMPOWER("i",10)=-1-16i(CALCI)=-1+6.1257422745431E-16i
  
</div></div>
+
*For imaginary value '0' is not accepting in CALCI.
----
 
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
  
Examples
+
==See Also==
 +
*[[Manuals/calci/IMREAL  | IMREAL ]]
 +
*[[Manuals/calci/IMSUM  | IMSUM ]]
 +
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
 +
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
  
</div></div>
 
----
 
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
 
----
 
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
  
<font size="5">Description</font>
+
==References==
 
+
[http://en.wikipedia.org/wiki/Binary_logarithm  Binary Logarithm]
</div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates a complex number in a + bi or a + bj text format raised to a power.</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="6">'''<font face="Arial">IMPOWER</font>'''</font></div></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">num can be an integer, fractional, or negative. </font></font></font>
 
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">A complex number raised to a power is calculated as follows: </font></font></font>
 
 
 
<font color="#484848"></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2"></font></font></font>
 
 
 
<font color="#484848"></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2"></font></font></font>
 
 
 
<font color="#484848"></font>
 
 
 
</div></div>
 
----
 
<div id="6SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IMPOWER'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''N'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where IN </font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">is a complex number and N is the power that raise the complex number.</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | (-6.999999999999999)+(24.000000000000003)i
 
| class="                      " |
 
|
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="f52543                                                                                                                                                      " |
 
| class="sshl_f SelectTD" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
|
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Let's see an example.</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">I.e.=IMPOWER(“i+2i”,4) is -6.999+24i</font></font></font>
 
 
 
</div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:equation%202.gif|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/equation%202.gif]]</div></div>
 
----
 

Revision as of 05:01, 17 December 2013

IMPOWER(z,n)


  • is the complex number is of the form
  • is the power value.

Description

  • This function gives the value of powers of complex number.
  • DeMoivre's Theorem is a generalized formula to compute powers of a complex number in it's polar form.
  • i'is the imaginary unit, i=sqrt(-1).
  • Then the power of a complex number is defined by (z)^n=(x+iy)^n=r^n*e^inθ=r^n(cosnθ+isinnθ) where r=sqrt(x^2+y^2) and θ=tan^-1(y/x), θ∈(is belongs to) (-Pi(),Pi()].
  • This formula is called DeMoivre's theorem of complex numbers.
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.
  • In IMPOWER(z,n), n can be integer, fractional or negative.
  • suppose n is nonnumeric , this function will returns the error value.

Examples

  1. IMPOWER("4+5i",3)=-235.99999+115i
  2. IMPOWER("9-7i",4)=-14852-8063.999999i
  3. IMPOWER("6",9)=10077696(EXCEL)=10077696-8i(CALCI)
  4. IMPOWER("i",10)=-1-16i(CALCI)=-1+6.1257422745431E-16i
  • For imaginary value '0' is not accepting in CALCI.

See Also


References

Binary Logarithm