Difference between revisions of "Manuals/calci/FTESTANALYSIS"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''FTESTANALYSIS'''(Array1, Array2, Alpha, NewTableFlag) where, '''Array1 and Array2 '''- Input range should...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''FTEST(ar1,ar2)'''</div><br/> |
+ | *<math>ar1</math> and <math>ar2 </math> are array of data. | ||
+ | ==Description== | ||
+ | *This function gives the result of F-test. | ||
+ | *The F-test is designed to test if two population variances are equal. | ||
+ | *It does this by comparing the ratio of two variances. | ||
+ | *So, if the variances are equal, the ratio of the variances will be 1. | ||
+ | *Let X1,...Xn and Y1...Ym be independent samples each have a Normal Distribution . | ||
+ | *It's sample means: | ||
+ | <math>\bar X=\frac{1}{n} \sum_{i=1}^n Xi</math> | ||
+ | and | ||
+ | :<math>\bar Y =\frac {1}{m} \sum_{i=1}^m Yi</math> . | ||
+ | *The sample variances : | ||
+ | <math>SX^2=\frac{1}{n-1} \sum_{i=1}^n (Xi-\bar X)^2</math> | ||
+ | and | ||
+ | :<math>SY^2=\frac{1}{m-1} \sum_{i=1}^m (Yi-\bar Y)^2</math> | ||
+ | *Then the Test Statistic = <math>\frac {Sx^2}{Sy^2}</math> has an F-distribution with <math>n−1</math> and <math>m−1</math> degrees of freedom. | ||
+ | *In FTEST(ar1,ar2) where <math>ar1</math> is the data of first array, <math>ar2</math> is the data of second array. | ||
+ | *The array may be any numbers, names, or references that contains numbers. | ||
+ | *values are not considered if the array contains any text, logical values or empty cells. | ||
+ | When the <math>ar1</math> or <math>ar2</math> is less than 2 or the variance of the array value is zero, then this function will return the result as error. | ||
− | + | ==Examples== | |
+ | 1. | ||
+ | {| class="wikitable" | ||
+ | |+ DATA1 | ||
+ | |- | ||
+ | | 15 | ||
+ | | 27 | ||
+ | | 19 | ||
+ | | 32 | ||
+ | |} | ||
− | + | {| class="wikitable" | |
+ | |+ DATA2 | ||
+ | |- | ||
+ | | 21 | ||
+ | | 12 | ||
+ | | 30 | ||
+ | | 11 | ||
+ | |} | ||
− | + | =FTEST(B4:B8,C4:C8)=0.81524906747183 | |
− | + | 2. | |
+ | {| class="wikitable" | ||
+ | |+ DATA1 | ||
+ | |- | ||
+ | | 5 | ||
+ | | 8 | ||
+ | | 12 | ||
+ | | 45 | ||
+ | | 23 | ||
+ | |} | ||
− | + | {| class="wikitable" | |
+ | |+ DATA2 | ||
+ | |- | ||
+ | | 10 | ||
+ | | 20 | ||
+ | | 30 | ||
+ | | 40 | ||
+ | | 50 | ||
+ | |} | ||
+ | =FTEST(A1:A5,C1:C5)=0.9583035732212274 | ||
+ | 3. | ||
+ | {| class="wikitable" | ||
+ | |+ DATA1 | ||
+ | |- | ||
+ | | 14 | ||
+ | | 26 | ||
+ | | 37 | ||
+ | |} | ||
− | + | {| class="wikitable" | |
− | + | |+ DATA2 | |
− | + | |- | |
− | + | | 45 | |
− | + | | 82 | |
+ | | 21 | ||
+ | |17 | ||
+ | |} | ||
+ | FTEST(B1:B3,C1:C4} = 0.26412211240525474 | ||
− | + | 4. | |
− | + | {| class="wikitable" | |
− | + | |+ DATA1 | |
− | + | |- | |
− | + | | 14 | |
− | + | |} | |
− | + | {| class="wikitable" | |
− | + | |+ DATA1 | |
− | + | |- | |
− | + | | 45 | |
− | + | | 65 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | {| | ||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |- | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | 14 | ||
− | | | ||
− | |||
− | |||
− | | class=" " | ||
− | | | ||
− | |||
− | |||
− | |- | ||
− | | | ||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
+ | =FTEST(B1,C2:C3)=NAN | ||
− | + | ==See Also== | |
− | + | *[[Manuals/calci/FDIST | FDIST ]] | |
− | + | *[[Manuals/calci/FINV | FINV ]] | |
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/F-test F Test] |
Revision as of 05:21, 17 December 2013
FTEST(ar1,ar2)
- and are array of data.
Description
- This function gives the result of F-test.
- The F-test is designed to test if two population variances are equal.
- It does this by comparing the ratio of two variances.
- So, if the variances are equal, the ratio of the variances will be 1.
- Let X1,...Xn and Y1...Ym be independent samples each have a Normal Distribution .
- It's sample means:
and
- .
- The sample variances :
and
- Then the Test Statistic = has an F-distribution with Failed to parse (syntax error): {\displaystyle n−1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m−1} degrees of freedom.
- In FTEST(ar1,ar2) where is the data of first array, is the data of second array.
- The array may be any numbers, names, or references that contains numbers.
- values are not considered if the array contains any text, logical values or empty cells.
When the or is less than 2 or the variance of the array value is zero, then this function will return the result as error.
Examples
1.
15 | 27 | 19 | 32 |
21 | 12 | 30 | 11 |
=FTEST(B4:B8,C4:C8)=0.81524906747183
2.
5 | 8 | 12 | 45 | 23 |
10 | 20 | 30 | 40 | 50 |
=FTEST(A1:A5,C1:C5)=0.9583035732212274
3.
14 | 26 | 37 |
45 | 82 | 21 | 17 |
FTEST(B1:B3,C1:C4} = 0.26412211240525474
4.
14 |
45 | 65 |
=FTEST(B1,C2:C3)=NAN