Difference between revisions of "Manuals/calci/IMSQRT"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''IMSQRT(z)'''</div><br/>
 +
*<math> z </math> is the complex number is of the form <math>x+iy</math>  
  
Syntax
 
  
 +
==Description==
 +
 +
*This function gives  square root of a complex number.
 +
*IMSQRT(z), Where z  is  the complex number is in the form of "x+iy".
 +
*where x&y are the real numbers.'i' imaginary unit<math>i=sqrt(-1)</math>.
 +
*The square root of a complex number is defined by <math>\sqrt(z)=\sqrt{x+iy}=\sqrt{r.e^iθ}=sqrt(r)[cos(θ/2)+isin(θ/2)],where r is the modulus of z.<math>r=\sqrt(x^2+y^2)</math> and θ is the argument of z.<math> θ=tan^-1(y/x)</math> also θ∈(-Pi(),Pi()].
 +
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
 
</div></div>
 
</div></div>
 
----
 
----

Revision as of 22:05, 18 December 2013

IMSQRT(z)


  • is the complex number is of the form


Description

  • This function gives square root of a complex number.
  • IMSQRT(z), Where z is the complex number is in the form of "x+iy".
  • where x&y are the real numbers.'i' imaginary unit.
  • The square root of a complex number is defined by Failed to parse (syntax error): {\displaystyle \sqrt(z)=\sqrt{x+iy}=\sqrt{r.e^iθ}=sqrt(r)[cos(θ/2)+isin(θ/2)],where r is the modulus of z.<math>r=\sqrt(x^2+y^2)} and θ is the argument of z.Failed to parse (syntax error): {\displaystyle θ=tan^-1(y/x)} also θ∈(-Pi(),Pi()].
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

Remarks


Examples


'''''''  ''''

Description


 

This function calculates the square root of a complex number in a + bi or a + bj text format.


 IMSQRT

 

The square root of a complex number is:


 

IMSQRT(IN)

where IN   is the complex number


Column1 Column2 Column3 Column4
Row1 1.455346690225355+0.34356074972251243i
Row2
Row3
Row4
Row5
Row6

 

Let's see an example

I.e =IMSQRT(“2+i”) is 1.4553+0.34356i