Difference between revisions of "Manuals/calci/IMSQRT"

From ZCubes Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
#=IMSQRT("7")=2.64575131106459                   
 
#=IMSQRT("7")=2.64575131106459                   
 
#=IMSQRT("8i")=2+2i
 
#=IMSQRT("8i")=2+2i
 +
 +
==See Also==
 +
*[[Manuals/calci/IMREAL  | IMREAL ]]
 +
*[[Manuals/calci/IMSUM  | IMSUM ]]
 +
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
 +
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
 +
 +
 +
==References==
 +
[http://en.wikipedia.org/wiki/Binary_logarithm  Binary Logarithm]

Revision as of 22:30, 18 December 2013

IMSQRT(z)


  • is the complex number is of the form


Description

  • This function gives square root of a complex number.
  • IMSQRT(z), Where z is the complex number is in the form of "x+iy".
  • where x&y are the real numbers.'i' imaginary unit ..
  • The square root of a complex number is defined by Failed to parse (syntax error): {\displaystyle \sqrt{z}=\sqrt{x+iy}=\sqrt{r.e^iθ}=\sqrt{r}(cos(θ/2)+isin(θ/2)}
  • where r is the modulus of z.
  • And θ is the argument of z. Failed to parse (syntax error): {\displaystyle θ=tan^{-1}(y/x)} also θ∈(-Pi(),Pi()].
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.


Examples

  1. =IMSQRT("2+3i")=1.67414922803554+0.895977476129838i
  2. =IMSQRT("-4-5i")=1.09615788950152-2.2806933416653i
  3. =IMSQRT("7")=2.64575131106459
  4. =IMSQRT("8i")=2+2i

See Also


References

Binary Logarithm