Difference between revisions of "Manuals/calci/GOLDENRATIO"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''GOLDENRATIO'''(phismall) where '''phismall''' is true or false </div> ---- <div id="1SpaceContent" cl...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
=GOLDENRATIO(phismall)=
  
'''GOLDENRATIO'''(phismall)
+
*where <math>phismall</math> is the logical value TRUE or FALSE.
  
where
+
GOLDENRATIO() returns the golden ratio value.
  
'''phismall''' is true or false
+
== Description ==
  
</div>
+
*Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities.
----
+
*Golden ratio is represented as '''phi(&phi;)''' and its conjugate is represented as '''Phi (&Phi)'''.
<div id="1SpaceContent" class="zcontent" align="left">
+
*If 'a' and 'b' are two quantities with 'a>b', then
  
GOLDENRATIO function returns goldenratio in smallphi  or capitalphi depending on the argument.
+
(&phi;) = <math>\frac{\(a + b)}{a}</math> = <math>\frac{\a}{b}</math>
 +
*Using quadratic formula, golden ratio is represented as -
  
</div>
+
&phi; = <math>\frac{1+&sqrt; 5}{2}</math> = 1.618033988749895
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
  
GOLDENRATIO returns goldenratio in smallphi if argument is not given.
+
&Phi; = <math>\frac{1-&sqrt; 5}{2}</math> = 0.6180339887498948
  
</div>
+
*Argument <math>phismall</math> can be logical values TRUE (or 1) or FALSE (or 0). Any other argument values are ignored and Calci assumes it to be TRUE or 1.
----
+
*If argument <math>phismall</math> is omitted, Calci assumes it as TRUE or 1 and displays the output as ''0.6180339887498948''.
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
*If argument is invalid, Calci returns a #NULL error message.
  
GOLDENRATIO
+
== Examples ==
  
</div></div>
+
GOLDENRATIO(TRUE) ''returns 0.6180339887498948'', value of capitalphi &Phi;
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
  
Lets see an example in (Column2Row1)
+
GOLDENRATIO(1) ''returns 0.6180339887498948'', value of capitalphi &Phi;
  
<nowiki>=GOLDENANGLE(false)</nowiki>
+
GOLDENRATIO(FALSE) ''returns 1.618033988749895'', value of smallphi &phi;
  
Returns 0.618034 for GOLDENRATIO(false)
+
GOLDENRATIO() ''returns 0.6180339887498948'', value of capitalphi &Phi;
  
Consider another example in (Column2Row2)
+
== See Also ==
  
<nowiki>=GOLDENRATIO(true)</nowiki>
+
*[[Manuals/calci/GOLDENANGLE  | GOLDENANGLE]]
  
Returns 1.618034 for =GOLDENRATIO(true)
+
== References ==
  
</div>
+
*[http://en.wikipedia.org/wiki/Golden_ratio Golden Ratio]
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|+ Default Calci
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
|
 
| class="sshl_f" | 0.618034
 
| class="                    sshl_f" |
 
| class="sshl_f  sshl_f    " |
 
|- class="even"
 
| class="  " | Row2
 
| class="1      " |
 
| class="sshl_f" | 1.618034
 
| class=" sshl_f" |
 
| class="sshl_f  sshl_f    " |
 
|- class="odd"
 
| Row3
 
|
 
| class="sshl_f              SelectTD1 ChangeBGColor SelectTD1" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]  </div>
 
| class="sshl_f    " |
 
| class="sshl_f    " |
 
|- class="even"
 
| Row4
 
|
 
| class=" sshl_f  " |
 
| class="sshl_f    " |
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
|
 
| class="  " |
 
| class="sshl_f    " |
 
| class="  " |
 
|- class="even"
 
| Row6
 
|
 
|
 
| class="sshl_f    " |
 
| class="  " |
 
|}
 
 
 
{|
 
| <span align="left">[[Image:calci1.gif]]</span>
 
|
 
|
 
[[Image:bold.gif]]
 
|
 
[[Image:italic.gif]]
 
|
 
[[Image:normal.gif]]
 
|
 
[[Image:underline.gif]]
 
|
 
[[Image:border.gif]]
 
|
 
[[Image:numbers.gif]]
 
|
 
[[Image:sort.gif]]
 
|
 
[[Image:formatcells.gif]]
 
|
 
[[Image:graphs.gif]]
 
| $
 
|}
 
 
 
</div>
 
----
 

Revision as of 06:17, 19 December 2013

GOLDENRATIO(phismall)

  • where is the logical value TRUE or FALSE.

GOLDENRATIO() returns the golden ratio value.

Description

  • Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities.
  • Golden ratio is represented as phi(φ) and its conjugate is represented as Phi (&Phi).
  • If 'a' and 'b' are two quantities with 'a>b', then
(φ) = Failed to parse (syntax error): {\displaystyle \frac{\(a + b)}{a}}
 = Failed to parse (unknown function "\a"): {\displaystyle \frac{\a}{b}}

  • Using quadratic formula, golden ratio is represented as -

φ = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1+&sqrt; 5}{2}} = 1.618033988749895

Φ = Failed to parse (syntax error): {\displaystyle \frac{1-&sqrt; 5}{2}} = 0.6180339887498948

  • Argument can be logical values TRUE (or 1) or FALSE (or 0). Any other argument values are ignored and Calci assumes it to be TRUE or 1.
  • If argument is omitted, Calci assumes it as TRUE or 1 and displays the output as 0.6180339887498948.
  • If argument is invalid, Calci returns a #NULL error message.

Examples

GOLDENRATIO(TRUE) returns 0.6180339887498948, value of capitalphi Φ

GOLDENRATIO(1) returns 0.6180339887498948, value of capitalphi Φ

GOLDENRATIO(FALSE) returns 1.618033988749895, value of smallphi φ

GOLDENRATIO() returns 0.6180339887498948, value of capitalphi Φ

See Also

References