Difference between revisions of "Manuals/calci/IMSQRT"

From ZCubes Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
*where x&y are the real numbers.<math>i</math> imaginary unit .<math>i=\sqrt{-1}</math>.
 
*where x&y are the real numbers.<math>i</math> imaginary unit .<math>i=\sqrt{-1}</math>.
 
*The square root of a complex number is defined by:
 
*The square root of a complex number is defined by:
<math>\sqrt{z}=\sqrt{x+iy}=\sqrt{r.e^{i\theta}}=\sqrt{r}cos(\frac{θ}{2})+isin(\frac{θ}{2})</math>
+
<math>\sqrt{z}=\sqrt{x+iy}=\sqrt{r.e^{i\theta}}=\sqrt{{r}cos(\frac{θ}{2})+isin(\frac{θ}{2}}</math>
 
*where <math>r</math> is the modulus of <math>z</math>. <math>r=\sqrt{x^2+y^2}</math>  
 
*where <math>r</math> is the modulus of <math>z</math>. <math>r=\sqrt{x^2+y^2}</math>  
 
*And <math>\theta</math> is the argument of <math>z</math>. <math> θ=tan^{-1}(y/x)</math> also <math>θ∈(-pi(),pi()]</math>.
 
*And <math>\theta</math> is the argument of <math>z</math>. <math> θ=tan^{-1}(y/x)</math> also <math>θ∈(-pi(),pi()]</math>.

Revision as of 22:40, 25 December 2013

IMSQRT(z)


  • is the complex number is of the form


Description

  • This function gives square root of a complex number.
  • IMSQRT(z), where z is the complex number is in the form of "x+iy".
  • where x&y are the real numbers. imaginary unit ..
  • The square root of a complex number is defined by:

Failed to parse (syntax error): {\displaystyle \sqrt{z}=\sqrt{x+iy}=\sqrt{r.e^{i\theta}}=\sqrt{{r}cos(\frac{θ}{2})+isin(\frac{θ}{2}}}

  • where is the modulus of .
  • And is the argument of . Failed to parse (syntax error): {\displaystyle θ=tan^{-1}(y/x)} also Failed to parse (syntax error): {\displaystyle θ∈(-pi(),pi()]} .
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

Examples

  1. =IMSQRT("2+3i")=1.67414922803554+0.895977476129838i
  2. =IMSQRT("-4-5i")=1.09615788950152-2.2806933416653i
  3. =IMSQRT("7")=2.64575131106459
  4. =IMSQRT("8i")=2+2i

See Also


References

Binary Logarithm