Difference between revisions of "Manuals/calci/ERF"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#000000"><font face="Arial, sans-serif"><font size="2">'''ERF'''</font></font><font face="Arial, sans-se...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''ERF(ll,ul)'''</div><br/>
 +
*<math>ll</math> is the lower limit and <math> ul </math> is the upper limit.
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">'''ERF'''</font></font><font face="Arial, sans-serif"><font size="2">(LL, UL)</font></font></font>
 
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">Where LL(lower limit) is the lower bound and UL(upper limit) is the upper bound for the integrating ERF.</font></font></font>
+
==Description==
 +
*This function gives the value of the error function .
 +
*Error function is the special function which is encountered in integrating the normal distribution.
 +
*In <math>ERF(ll,ul),ll</math> is the lower limit of the integrating function and <math>ul</math> is the upper limit of the integrating function.
 +
*Also <math>ul</math> is optional. When we are omitting the <math>ul</math> value, then the  integral of the error function between 0 and the given <math>ll</math> value is returned otherwise it will consider the given <math>ll</math> and <math>ul</math> values.
 +
*This function is also called Gauss error function.<math>ERF </math>is defined by:                                                    <math>ERF(z)=\frac {2}{sqrt(pi()}\int\limit_{0}^{z}e^-t^2 dt       
 +
ERF(a,b)=\frac{2}{sqrt(pi()}\int\limit_{a}^{b}e^-t^2 dt=ERF(b)-ERF(a)(/math>.
 +
*In this case 'a' is the lower limit and 'b' is the upper limit.
 +
*This function will return the result as error when
 +
#any one of the argument is nonnumeric.
 +
#ll or ul is negative.
  
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
  
* <font color="#000000"><font face="Arial, sans-serif"><font size="2">ERF returns the zero(error) value, whenever the LL and UL is nonnumeric or negative.</font></font></font>
+
==Examples==
 +
#ERF(1,2)=0.15262153
 +
#ERF(3,2)=-0.004655645
 +
#ERF(0,1)=0.842700735
 +
#ERF(5)=1
 +
#ERF(-3)=NAN
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/ERFC  | ERFC ]]
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
ERF
+
==References==
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2">Lets see an example,</font></font></font>]
 
 
 
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2">ERF(LL, UL)</font></font></font>]
 
 
 
<font face="Tahoma, sans-serif"><font size="1">[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2"><nowiki>=ERF(0.525) 0.5422</nowiki></font></font></font>]</font></font>
 
 
 
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2"><nowiki>=ERF(2) is 0.9953</nowiki></font></font></font>]
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><font color="#000000"><font face="Arial, sans-serif"><font size="2">
 
 
 
<font color="#000000"><font face="Arial, sans-serif"><font size="2">This function shows the error function integrated between the lower limit and the upper limit of a function.</font></font></font>
 
 
 
</font></font></font></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class="  " |
 
<div id="1Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 0.5422
 
| class="sshl_f" | 0.9953
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" |
 
| class="sshl_f SelectTD SelectTD" |
 
<div id="1Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="1Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Revision as of 22:42, 25 December 2013

ERF(ll,ul)


  • is the lower limit and is the upper limit.


Description

  • This function gives the value of the error function .
  • Error function is the special function which is encountered in integrating the normal distribution.
  • In is the lower limit of the integrating function and is the upper limit of the integrating function.
  • Also is optional. When we are omitting the value, then the integral of the error function between 0 and the given value is returned otherwise it will consider the given and values.
  • This function is also called Gauss error function.is defined by: <math>ERF(z)=\frac {2}{sqrt(pi()}\int\limit_{0}^{z}e^-t^2 dt

ERF(a,b)=\frac{2}{sqrt(pi()}\int\limit_{a}^{b}e^-t^2 dt=ERF(b)-ERF(a)(/math>.

  • In this case 'a' is the lower limit and 'b' is the upper limit.
  • This function will return the result as error when
  1. any one of the argument is nonnumeric.
  2. ll or ul is negative.


Examples

  1. ERF(1,2)=0.15262153
  2. ERF(3,2)=-0.004655645
  3. ERF(0,1)=0.842700735
  4. ERF(5)=1
  5. ERF(-3)=NAN

See Also

References