Difference between revisions of "Manuals/calci/ERF"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#000000"><font face="Arial, sans-serif"><font size="2">'''ERF'''</font></font><font face="Arial, sans-se...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''ERF(ll,ul)'''</div><br/> |
+ | *<math>ll</math> is the lower limit and <math> ul </math> is the upper limit. | ||
− | |||
− | + | ==Description== | |
+ | *This function gives the value of the error function . | ||
+ | *Error function is the special function which is encountered in integrating the normal distribution. | ||
+ | *In <math>ERF(ll,ul),ll</math> is the lower limit of the integrating function and <math>ul</math> is the upper limit of the integrating function. | ||
+ | *Also <math>ul</math> is optional. When we are omitting the <math>ul</math> value, then the integral of the error function between 0 and the given <math>ll</math> value is returned otherwise it will consider the given <math>ll</math> and <math>ul</math> values. | ||
+ | *This function is also called Gauss error function.<math>ERF </math>is defined by: <math>ERF(z)=\frac {2}{sqrt(pi()}\int\limit_{0}^{z}e^-t^2 dt | ||
+ | ERF(a,b)=\frac{2}{sqrt(pi()}\int\limit_{a}^{b}e^-t^2 dt=ERF(b)-ERF(a)(/math>. | ||
+ | *In this case 'a' is the lower limit and 'b' is the upper limit. | ||
+ | *This function will return the result as error when | ||
+ | #any one of the argument is nonnumeric. | ||
+ | #ll or ul is negative. | ||
− | |||
− | |||
− | |||
− | + | ==Examples== | |
+ | #ERF(1,2)=0.15262153 | ||
+ | #ERF(3,2)=-0.004655645 | ||
+ | #ERF(0,1)=0.842700735 | ||
+ | #ERF(5)=1 | ||
+ | #ERF(-3)=NAN | ||
− | + | ==See Also== | |
− | + | *[[Manuals/calci/ERFC | ERFC ]] | |
− | |||
− | + | ==References== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 22:42, 25 December 2013
ERF(ll,ul)
- is the lower limit and is the upper limit.
Description
- This function gives the value of the error function .
- Error function is the special function which is encountered in integrating the normal distribution.
- In is the lower limit of the integrating function and is the upper limit of the integrating function.
- Also is optional. When we are omitting the value, then the integral of the error function between 0 and the given value is returned otherwise it will consider the given and values.
- This function is also called Gauss error function.is defined by: <math>ERF(z)=\frac {2}{sqrt(pi()}\int\limit_{0}^{z}e^-t^2 dt
ERF(a,b)=\frac{2}{sqrt(pi()}\int\limit_{a}^{b}e^-t^2 dt=ERF(b)-ERF(a)(/math>.
- In this case 'a' is the lower limit and 'b' is the upper limit.
- This function will return the result as error when
- any one of the argument is nonnumeric.
- ll or ul is negative.
Examples
- ERF(1,2)=0.15262153
- ERF(3,2)=-0.004655645
- ERF(0,1)=0.842700735
- ERF(5)=1
- ERF(-3)=NAN