Difference between revisions of "Manuals/calci/LOGNORMDIST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
*[[Manuals/calci/LOG10  | LOG10 ]]
 
*[[Manuals/calci/LOG10  | LOG10 ]]
 
*[[Manuals/calci/EXP  | EXP ]]
 
*[[Manuals/calci/EXP  | EXP ]]
 +
 +
==References==
 +
[http://en.wikipedia.org/wiki/Log-normal_distribution Log-normal distribution]

Revision as of 00:37, 26 December 2013

LOGNORMDIST((x,m,sd)


  • is the value , is the mean of ,
  • And is the standard deviation of .

Description

  • This function gives the value of the cumulative log normal distribution.
  • This distribution is the continuous probability distribution.
  • Lognomal distribution is also called Galton's distribution.
  • A random variable which is log-normally distributed takes only positive real values.
  • Suppose is Normally Distributed function, then also Normally Distributed
  • also Normally Distributed.
  • Let the Normal Distribution function and its Mean= Failed to parse (syntax error): {\displaystyle μ} , Standard Deviation = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle σ}
  • Then the lognormal cumulative distribution is calculated by:Failed to parse (syntax error): {\displaystyle F(x,μ,σ)=1/2[1+(erf(ln(x)-μ)/σsqrt(2)= φ[(ln(x)-μ)/σ]} where is the error function( the error function (also called the Gauss error function) is a special function of sigmoid shape which occurs in probability, statistics and partial differential equations)
  • And Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle φ} is the Cumulative Distribution function of the Standard Normal distribution.
  • This function will give the result as error when
  • 1. Any one of the argument is nonnumeric.
  • 2.suppose or

Examples

  1. LOGNORMDIST(2,5.4,2.76)=0.044061652
  2. LOGNORMDIST(10,24.05,12.95)=0.046543186
  3. LOGNORMDIST(50,87.0036,42.9784)=0.026597569
  4. LOGNORMDIST(-10,5,2)=NAN

See Also

References

Log-normal distribution