Difference between revisions of "Manuals/calci/LOGNORMDIST"
Jump to navigation
Jump to search
Line 20: | Line 20: | ||
==Examples== | ==Examples== | ||
− | #LOGNORMDIST(2,5.4,2.76)=0.044061652 | + | #=LOGNORMDIST(2,5.4,2.76) = 0.044061652 |
− | #LOGNORMDIST(10,24.05,12.95)=0.046543186 | + | #=LOGNORMDIST(10,24.05,12.95) = 0.046543186 |
− | #LOGNORMDIST(50,87.0036,42.9784)=0.026597569 | + | #=LOGNORMDIST(50,87.0036,42.9784) = 0.026597569 |
− | #LOGNORMDIST(-10,5,2)=NAN | + | #=LOGNORMDIST(-10,5,2) = NAN |
==See Also== | ==See Also== |
Revision as of 05:33, 1 January 2014
LOGNORMDIST(x,m,sd)
- is the value , is the mean of ,
- And is the standard deviation of .
Description
- This function gives the value of the cumulative log normal distribution.
- This distribution is the continuous probability distribution.
- Lognomal distribution is also called Galton's distribution.
- A random variable which is log-normally distributed takes only positive real values.
- Suppose is Normally Distributed function, then also Normally Distributed
- also Normally Distributed.
- Let the Normal Distribution function and its Mean= , Standard Deviation =
- Then the lognormal cumulative distribution is calculated by:
where is the error function,. The error function (also called the Gauss error function) is a special function of sigmoid shape which occurs in probability, statistics and partial differential equations.
- And is the Cumulative Distribution function of the Standard Normal distribution.
- This function will give the result as error when
1. Any one of the argument is non-numeric. 2. Suppose or
Examples
- =LOGNORMDIST(2,5.4,2.76) = 0.044061652
- =LOGNORMDIST(10,24.05,12.95) = 0.046543186
- =LOGNORMDIST(50,87.0036,42.9784) = 0.026597569
- =LOGNORMDIST(-10,5,2) = NAN