Difference between revisions of "Manuals/calci/PERCENTRANK"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''PERCENTRANK'''(Array, X ,k) where, '''Array''' -  represents set of data. '''X''' - represents the ran...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''PERCENTRANK(ar,x) '''</div><br/>
 +
*<math>ar</math>  is the array  data and  <math> x </math> is  the value
  
'''PERCENTRANK'''(Array, X ,k)
+
 
 +
==Description==
 +
*This function gives the percentage rank of a value in a given set of numbers.
 +
*To calculate the relative standing of a data set we can use this function.
 +
*For example, a test score that is greater than or equal to 50% of the scores of people taking the test is said to be at the 50th percentile rank.
 +
*Percentile ranks are commonly used to clarify the interpretation of scores on standardized tests.
 +
* To find the percentile rank of a score is :<math>PR \%= \frac {L+( 0.5*S )}{N}
 +
Where,
 +
L = Number of below rank,
 +
S = Number of same rank,
 +
N = Total numbers.
 +
*In PERCENTRANK(ar,x),ar is the array  of numeric values and x is the value to find the rank. This function gives the result as error when array is empty .
  
 
where,
 
where,
Line 31: Line 43:
 
Lets see an example in (Column2, Row1)
 
Lets see an example in (Column2, Row1)
  
<nowiki>=PERCENTRANK(R1C1:R6C1, 4)</nowiki>
+
UNIQ9722b96f1f2484ba-nowiki-00000004-QINU
  
 
PERCENTRANK returns 0.66667.
 
PERCENTRANK returns 0.66667.
Line 37: Line 49:
 
Cosider an another example
 
Cosider an another example
  
<nowiki>=PERCENTRANK([1,2,3,4,5,6], -1)</nowiki>
+
UNIQ9722b96f1f2484ba-nowiki-00000005-QINU
  
 
It returns #ERROR(K=-1).
 
It returns #ERROR(K=-1).

Revision as of 00:18, 6 January 2014

PERCENTRANK(ar,x)


  • is the array data and is the value


Description

  • This function gives the percentage rank of a value in a given set of numbers.
  • To calculate the relative standing of a data set we can use this function.
  • For example, a test score that is greater than or equal to 50% of the scores of people taking the test is said to be at the 50th percentile rank.
  • Percentile ranks are commonly used to clarify the interpretation of scores on standardized tests.
  • To find the percentile rank of a score is :<math>PR \%= \frac {L+( 0.5*S )}{N}

Where, L = Number of below rank, S = Number of same rank, N = Total numbers.

  • In PERCENTRANK(ar,x),ar is the array of numeric values and x is the value to find the rank. This function gives the result as error when array is empty .

where,

Array -  represents set of data.

X - represents the rank for value.

k - represents the number of significant digit for the returned percentage value.If omitted, it returns 3 digit after decimal point.


It returns the rank for data set as a percentage of the data set.

If k < 1, PERCENTRANK returns the #ERROR.


PERCENTRANK


Lets see an example in (Column2, Row1)

?UNIQ9722b96f1f2484ba-nowiki-00000004-QINU?

PERCENTRANK returns 0.66667.

Cosider an another example

?UNIQ9722b96f1f2484ba-nowiki-00000005-QINU?

It returns #ERROR(K=-1).


Syntax

Remarks

Examples

Description

Column1 Column2 Column3 Column4
Row1 5 0.066667
Row2 7
Row3 18
Row4 23
Row5 41
Row6 2