Difference between revisions of "Manuals/calci/poisson"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''POISSON'''(X, Mean, Cumulative) where, '''X''' - are represents number of events. '''Mean '''- is the e...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''POISSON(x,m,cu)'''</div><br/>
 +
*<math>x</math>    is the number of events.
 +
*<math>m </math> is the mean
 +
*<math>cu</math> is the logical value like TRUE or FALSE.
  
'''POISSON'''(X, Mean, Cumulative)
+
 
 +
==Description==
 +
*This function gives the value of the Poisson distribution.
 +
*The Poisson distribution is a discrete probability distribution for the counts of events that occur randomly in a given interval of time.
 +
*It is  is used to model the number of events occurring within a given time interval.
 +
*In <math>POISSON(x,m,cu), x </math> is the number of events in a given interval of time, <math> m </math> is the Average numeric value and <math> cu </math> is the logical value.
 +
*If it is TRUE, this function will give the cumulative Poisson probability with the number of random events between 0 and x(included).
 +
*If it is FALSE,this function will give the Poisson probability mass function with the number of events occuring will be exactly x.
 +
*The POSSON probability mass function is: <math> f(x,\lambda)=\frac{\lambda^x.e^{-\lambda}}{x!}, x=0,1,2,...where \lambda is the shape parameter and \lambda>0.e is the base of the natural logarithm (e=2.718282).
 +
*The cumulative Poisson probability  function is:F(k,λ)=Summation(k=0 to x) e^-λ .λ^k/k!.
 +
*This function will return the result as error when
 +
1.x or m is nonnumeric.
 +
2.x<0 or m<0.
  
 
where,
 
where,
Line 51: Line 66:
 
Lets see an example in (Column1, Row1)
 
Lets see an example in (Column1, Row1)
  
<nowiki>=POISSON(5,6,TRUE)</nowiki>
+
UNIQ1bbe901cd2555324-nowiki-00000004-QINU
  
 
POISSON returns 0.44568.
 
POISSON returns 0.44568.
Line 57: Line 72:
 
Cosider an another example
 
Cosider an another example
  
<nowiki>=POISSON(3,4,false)</nowiki>
+
UNIQ1bbe901cd2555324-nowiki-00000005-QINU
  
 
POISSON returns 0.195367.
 
POISSON returns 0.195367.

Revision as of 02:15, 6 January 2014

POISSON(x,m,cu)


  • is the number of events.
  • is the mean
  • is the logical value like TRUE or FALSE.


Description

  • This function gives the value of the Poisson distribution.
  • The Poisson distribution is a discrete probability distribution for the counts of events that occur randomly in a given interval of time.
  • It is is used to model the number of events occurring within a given time interval.
  • In is the number of events in a given interval of time, is the Average numeric value and is the logical value.
  • If it is TRUE, this function will give the cumulative Poisson probability with the number of random events between 0 and x(included).
  • If it is FALSE,this function will give the Poisson probability mass function with the number of events occuring will be exactly x.
  • The POSSON probability mass function is: <math> f(x,\lambda)=\frac{\lambda^x.e^{-\lambda}}{x!}, x=0,1,2,...where \lambda is the shape parameter and \lambda>0.e is the base of the natural logarithm (e=2.718282).
  • The cumulative Poisson probability function is:F(k,λ)=Summation(k=0 to x) e^-λ .λ^k/k!.
  • This function will return the result as error when
1.x or m is nonnumeric.
2.x<0 or m<0.

where,

X - are represents number of events.

Mean - is the expected numeric values.

Cumulative - returned the logical value that determines the form of the probability distribution.

If TRUE - returnd the cumulative Poisson probability that the number of random events occuring will be between 0 and X.

If FALSE -returns the Poisson probability mass function that the number of events occuring will be exactly X.


Returns the Poisson distribution.

Formula :-

If Cumulative =FALSE

POISSON = (eλ× ) / x!

If Cumulative = TRUE

POISSON = Σ(eλ× ) /k!


If X orMean is nonnumeric, POISSON returns the #ERROR.

If X < 0 or Mean < 0 ,POISSON returns the #ERROR.


POISSON


Lets see an example in (Column1, Row1)

?UNIQ1bbe901cd2555324-nowiki-00000004-QINU?

POISSON returns 0.44568.

Cosider an another example

?UNIQ1bbe901cd2555324-nowiki-00000005-QINU?

POISSON returns 0.195367.


Syntax

Remarks

Examples

Description

Column1 Column2 Column3 Column4
Row1 0.44568
Row2 0.195367
Row3
Row4
Row5
Row6