Difference between revisions of "Manuals/calci/poisson"

From ZCubes Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
*<math>m </math> is the mean  
 
*<math>m </math> is the mean  
 
*<math>cu</math> is the logical value like TRUE or FALSE.
 
*<math>cu</math> is the logical value like TRUE or FALSE.
 
  
 
==Description==
 
==Description==
Line 11: Line 10:
 
*In <math>POISSON(x,m,cu), x </math> is the number of events in a given interval of time, <math> m </math> is the Average numeric value and <math> cu </math> is the logical value.  
 
*In <math>POISSON(x,m,cu), x </math> is the number of events in a given interval of time, <math> m </math> is the Average numeric value and <math> cu </math> is the logical value.  
 
*If it is TRUE, this function will give the cumulative Poisson probability with the number of random events between 0 and x(included).
 
*If it is TRUE, this function will give the cumulative Poisson probability with the number of random events between 0 and x(included).
*If it is FALSE,this function will give the Poisson probability mass function with the number of events occuring will be exactly x.
+
*If it is FALSE,this function will give the Poisson probability mass function with the number of events occurring will be exactly x.
*The <math>POISSON </math>probability mass function is: <math> f(x,\lambda)=\frac{\lambda^x.e^{-\lambda}}{x!}</math>,     x=0,1,2,...where <math> \lambda </math> is the shape parameter and <math>\lambda</math>>0. e is the base of the natural logarithm (e=2.718282).
+
*The <math>POISSON </math>probability mass function is: <math> f(x,\lambda)=\frac{\lambda^x.e^{-\lambda}}{x!}</math>, <math>x=0,1,2,...where <math> \lambda </math> is the shape parameter and <math>\lambda</math>>0. <math>e</math> is the base of the natural logarithm (e=2.718282).
 
*The cumulative Poisson probability  function is:<math>F(k,\lambda)=\sum_{k=0}^x \frac{e^{-\lambda} .\lambda^k}{k!}</math>.  
 
*The cumulative Poisson probability  function is:<math>F(k,\lambda)=\sum_{k=0}^x \frac{e^{-\lambda} .\lambda^k}{k!}</math>.  
 
*This function will return the result as error when  
 
*This function will return the result as error when  
  1.x or m is nonnumeric.
+
  1.<math>x</math> or <math>m<math> is non-numeric.
  2.x<0 or m<0.
+
  2.<math>x<0</math> or <math>m<0</math>.
  
 
==Examples==
 
==Examples==
Line 27: Line 26:
 
==See Also==
 
==See Also==
 
*[[Manuals/calci/EXPONDIST  | EXPONDIST ]]
 
*[[Manuals/calci/EXPONDIST  | EXPONDIST ]]
 
  
 
==References==
 
==References==
 +
[http://en.wikipedia.org/wiki/Poisson_distribution Poisson distribution ]

Revision as of 03:25, 7 January 2014

POISSON(x,m,cu)


  • is the number of events.
  • is the mean
  • is the logical value like TRUE or FALSE.

Description

  • This function gives the value of the Poisson distribution.
  • The Poisson distribution is a discrete probability distribution for the counts of events that occur randomly in a given interval of time.
  • It is is used to model the number of events occurring within a given time interval.
  • In is the number of events in a given interval of time, is the Average numeric value and is the logical value.
  • If it is TRUE, this function will give the cumulative Poisson probability with the number of random events between 0 and x(included).
  • If it is FALSE,this function will give the Poisson probability mass function with the number of events occurring will be exactly x.
  • The probability mass function is: , is the shape parameter and >0. is the base of the natural logarithm (e=2.718282).
  • The cumulative Poisson probability function is:.
  • This function will return the result as error when
1. or  or .

Examples

  1. POISSON(6,2,TRUE)=0.995466194
  2. POISSON(6,2,FALSE)=0.012029803
  3. POISSON(10.2,7,TRUE)=0.901479206
  4. POISSON(10.2,7,FALSE)=0.070983269
  5. POISSON(6,0,TRUE)=1

See Also

References

Poisson distribution