Difference between revisions of "Manuals/calci/RSQ"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font face="Arial, sans-serif"><font size="2">'''RSQ'''</font></font><font face="Arial, sans-serif"><font size="2">(</f...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font face="Arial, sans-serif"><font size="2">'''RSQ'''</font></font><font face="Arial, sans-serif"><font size="2">(</font></font><font face="Arial, sans-serif"><font size="2">'''ky's'''</font></font><font face="Arial, sans-serif"><font size="2">,</font></font><font face="Arial, sans-serif"><font size="2">'''kx's'''</font></font><font face="Arial, sans-serif"><font size="2">)</font></font>
+
<div style="font-size:30px">'''RSQ(ar1,ar2)'''</div><br/>
 +
*<math>ar1</math> is the array of y values  .
 +
*<math>ar2</math> is the array of x values.
  
<font face="Arial, sans-serif"><font size="2">'''Where ky's'''</font></font><font face="Arial, sans-serif"><font size="2">   is an array or range of data points and k</font></font><font face="Arial, sans-serif"><font size="2">'''x's'''</font></font><font face="Arial, sans-serif"><font size="2">   is an array or range of data points.</font></font>
 
  
</div>
+
==Description==
----
+
*This function gives the square of Pearson Product Moment Correlation Coefficient.
<div id="1SpaceContent" class="zcontent" align="left">   <font face="Arial, sans-serif"><font size="2">It calculates the square of the Pearson product moment correlation coefficient through data points in ky's and kx's. </font></font><font face="Arial, sans-serif"><font size="2"> </font></font></div>
+
*This function is calculated using the data points of <math>y</math> and <math>x</math> values.
----
+
*The formula for PPMC,<math>r</math> is defined by:
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
<math> r= \frac{ \Sigma(x-\bar{x})(y-\bar{y})}{\sqrt {\Sigma(x-\bar{x})^2(y-\bar{y})^2}}</math>   
 +
where <math> \bar{x}</math>  and  <math>\bar{y} </math>  are Average of the two Samples <math>x </math> and  <math>y </math>. 
 +
*This function gives the value of r^2, which is the square of this correlation coefficient
 +
*The square value can be interpreted as the proportion of the variance in y attributable to the variance in x.  
 +
*In <math> RSQ(ar1,ar2)</math>,the value of <math>ar1</math> and <math>ar1</math> must be either numbers or names, array,constants or references that contain numbers.
 +
*Suppose the array contains text,logicl values or empty cells, like that values are not considered. 
 +
*This function will return the result as error when 1. ar1 and ar2 are empty or having the different number of data points.
 +
2. The arguments having only one data point.
 +
3. The arguments that are error values or text that cannot be translated in to numbers.
 +
We want to know more detail, see PEARSON.
  
RSQ
 
  
</div></div>
+
==Examples==
----
+
{| class="wikitable"
<div id="8SpaceContent" class="zcontent" align="left"> 
+
|+Spreadsheet
 
+
|-
<font color="#000000"><font face="Times New Roman, serif"><font size="3">i.e.RSQ(Column1 Row 1:Column1Row8, Column2 Row 1:Column2Row8)</font></font></font>
+
! !! A !! B !! C !!D !! E !! F !! G !! H
 
+
|-
<font color="#000000"><font face="Times New Roman, serif"><font size="3">i.e.=RSQ(C1R1:C1R8,C2R1:C2R8)</font></font></font>
+
! 1
 
+
| 12 || 10 || 17 || 21 || 25 || 31 || 19 || 5
<font color="#000000"><font face="Times New Roman, serif"><font size="3"><nowiki>=0.6002</nowiki></font></font></font>
+
|-
 
+
! 2
</div>
+
| 4 || 37 || 8 || 18 || 0 || 13 || 15 || 41
----
+
|-
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
+
! 3
----
+
| 9 ||
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| class="  " | Column1
 
| class="      " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 4
 
| class="sshl_f " | 16
 
| class="sshl_f" | 0.6002
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 6
 
| class="sshl_f" | 15
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 7
 
| class="sshl_f" | 10
 
|
 
|
 
|- class="even"
 
| Row4
 
| class="sshl_f" | 5
 
| class="sshl_f" | 17
 
|
 
| class=" " |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" | 9
 
| class="  sshl_f  " | 8
 
|
 
|
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f" | 0
 
| class="sshl_f" | 14
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f  " | Row7
 
| class="    SelectTD SelectTD" |
 
<div id="2Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>11
 
| class="sshl_f " | 1
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row8
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row9
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row10
 
| class="sshl_f" |
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Revision as of 03:35, 16 January 2014

RSQ(ar1,ar2)


  • is the array of y values .
  • is the array of x values.


Description

  • This function gives the square of Pearson Product Moment Correlation Coefficient.
  • This function is calculated using the data points of and values.
  • The formula for PPMC, is defined by:

where and are Average of the two Samples and .

  • This function gives the value of r^2, which is the square of this correlation coefficient.
  • The square value can be interpreted as the proportion of the variance in y attributable to the variance in x.
  • In ,the value of and must be either numbers or names, array,constants or references that contain numbers.
  • Suppose the array contains text,logicl values or empty cells, like that values are not considered.
  • This function will return the result as error when 1. ar1 and ar2 are empty or having the different number of data points.

2. The arguments having only one data point. 3. The arguments that are error values or text that cannot be translated in to numbers. We want to know more detail, see PEARSON.


Examples

Spreadsheet
A B C D E F G H
1 12 10 17 21 25 31 19 5
2 4 37 8 18 0 13 15 41
3 9