Difference between revisions of "Manuals/calci/SLOPE"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font face="Arial, sans-serif"><font size="2">'''SLOPE'''</font></font><font face="Arial, sans-serif"><font size="2">...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''SLOPE(y,x)'''</div><br/>
 +
*<math> y </math> is the set of dependent values.
 +
*<math> x </math> is the set of independent  values.
  
<font face="Arial, sans-serif"><font size="2">'''SLOPE'''</font></font><font face="Arial, sans-serif"><font size="2">(</font></font><font face="Arial, sans-serif"><font size="2">'''ky's'''</font></font><font face="Arial, sans-serif"><font size="2">,</font></font><font face="Arial, sans-serif"><font size="2">'''kx's'''</font></font><font face="Arial, sans-serif"><font size="2">)</font></font>
 
  
<font face="Arial, sans-serif"><font size="2"></font></font><font face="Arial, sans-serif"><font size="2">'''Where ky's'''</font></font><font face="Arial, sans-serif"><font size="2">   is an array or cell range of numeric dependent data points and </font></font><font face="Arial, sans-serif"><font size="2">'''Kx's'''</font></font><font face="Arial, sans-serif"><font size="2">   is the set of independent data points.</font></font>
+
==Description==
 +
*This function gives the slope of the linear regression line through a set of given points.
 +
*The slope of a regression line (b) represents the rate of change in y as x changes.
 +
*To find a slope we can use the least squares method.
 +
*Slope is  found by calculating b as the covariance of x and y, divided by the sum of squares (variance) of x.
 +
*In SLOPE(y,x), y is the array of the numeric dependent values and x is the array of the independent values.
 +
*The arguments can be be either numbers or names, array,constants or references that contain numbers.
 +
*Suppose the array contains text,logical values or empty cells, like that values are not considered.
 +
*The equation for the slope of the regression line is :<math>b = \frac {\sum (x-\bar{x})(y-\bar{y})} {\sum(x-\bar{x})^2</math>.  where <math>\bar{x}</math> and <math>\bar{y}</math> are the sample mean x and y.
 +
*This function will return the result as error when
 +
  1. Any one of the argument is nonnumeric.
 +
  2. x and y are empty or that have a different number of data points.
  
</div>
+
==Examples==
----
+
1.y={4,9,2,6,7}
<div id="1SpaceContent" class="zcontent" align="left"> <font face="Arial, sans-serif"><font size="2">It calculates the slope of the linear regression line through data points in ky's and kx's. </font></font></div>
+
x={1,5,10,3,4}
----
+
SLOPE(A1:A5,B1:B5)=-0.305309734513
<div id="7SpaceContent" class="zcontent" align="left"><font size="2" color="#7f7f7f" face="Arial">The equation for the slope of the regression line is: </font>
+
2.y={2,9,3,8,10,17}
 +
x={4,5,11,7,15,12}
 +
SLOPE(B1:B6,C1:C6)=0.58510638297
 +
3.y={0,9,4}
 +
  x={-1,5,7}
 +
SLOPE(C1:C3)=0.730769230769
  
<br /><br />
 
  
<font size="2" color="#7f7f7f" face="Arial">where x and y are the sample means AVERAGE(kx’s) and AVERAGE(ky’s).</font><br />
+
==See Also==
 +
*[[Manuals/calci/INTERCEPT | INTERCEPT]]
 +
*[[Manuals/calci/RSQ  | RSQ ]]
 +
*[[Manuals/calci/PEARSON | PEARSON ]]
  
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
SLOPE
+
==References==
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#000000"><font face="Arial, sans-serif"><font size="3"><nowiki>=SLOPE(B2:B8,C2:C8) is 0.3993</nowiki></font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><div>
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
<div id="5Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class=" " | Column1
 
| class=" " | Column2
 
| class="  " | Column3
 
| class=" SelectTD" |
 
<div id="5Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="5Space_Copy" title="Click and Drag over to AutoFill other cells."></div>Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 5
 
| class="sshl_f " | 16
 
| class="sshl_f" | 0.3993
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 6
 
| class="sshl_f" | 12
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 9
 
| class="sshl_f" | 8
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" | 10
 
| class="sshl_f" | 5
 
| class="    sshl_f      " |
 
<div id="5Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" | 18
 
| class="sshl_f" | 17
 
| class="sshl_f " |
 
<div id="5Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | rOW6
 
| class="sshl_f" | 4
 
| class="sshl_f" | 9
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="  " | 3
 
| class="sshl_f  " | 9
 
| class=" " |
 
<div id="5Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
</div>
 

Revision as of 03:11, 20 January 2014

SLOPE(y,x)


  • is the set of dependent values.
  • is the set of independent values.


Description

  • This function gives the slope of the linear regression line through a set of given points.
  • The slope of a regression line (b) represents the rate of change in y as x changes.
  • To find a slope we can use the least squares method.
  • Slope is found by calculating b as the covariance of x and y, divided by the sum of squares (variance) of x.
  • In SLOPE(y,x), y is the array of the numeric dependent values and x is the array of the independent values.
  • The arguments can be be either numbers or names, array,constants or references that contain numbers.
  • Suppose the array contains text,logical values or empty cells, like that values are not considered.
  • The equation for the slope of the regression line is :Failed to parse (syntax error): {\displaystyle b = \frac {\sum (x-\bar{x})(y-\bar{y})} {\sum(x-\bar{x})^2} . where and are the sample mean x and y.
  • This function will return the result as error when
 1. Any one of the argument is nonnumeric. 
 2. x and y are empty or that have a different number of data points.

Examples

1.y={4,9,2,6,7}

x={1,5,10,3,4}

SLOPE(A1:A5,B1:B5)=-0.305309734513 2.y={2,9,3,8,10,17}

x={4,5,11,7,15,12}

SLOPE(B1:B6,C1:C6)=0.58510638297 3.y={0,9,4}

 x={-1,5,7}

SLOPE(C1:C3)=0.730769230769


See Also


References