Difference between revisions of "Manuals/calci/STEYX"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''STEYX'''</font></font></font><font color="#48484...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''STEYX(y,x)'''</div><br/> |
− | + | *<math>y</math> is set of dependent values. | |
− | + | *<math>x </math> is the set of independent values. | |
− | |||
− | |||
− | |||
− | * < | + | ==Description== |
− | * < | + | *This function gives the standard error of the regression, which also is known as the standard error of the estimate. |
+ | *It is calculates the standard error for the straight line of best fit through a supplied set of <math> x </math> and <math> y </math> values. | ||
+ | *The standard error for this line provides a measure of the error in the prediction of <math> y </math> for an individual <math> x </math>. | ||
+ | *The equation for the standard error of the predicted <math> y </math> is: SQRT(1/(n-2)[summation (y-y(bar)^2-[summation (x-x(bar)(y-y(bar)]^2/summation(x-x(bar))^2] ,where x(bar) and y(bar) are the sample mean <math> x </math> and <math> y </math>. | ||
+ | *In <math> STEYX(y,x), y </math> is the array of the numeric dependent values and <math> x </math> is the array of the independent values. | ||
+ | *The arguments can be be either numbers or names, array,constants or references that contain numbers. | ||
+ | *Suppose the array contains text,logical values or empty cells, like that values are not considered. | ||
+ | *This function will return the result as error when | ||
+ | 1. Any one of the argument is nonnumeric. | ||
+ | 2. x and y are empty or that have less than three data points. | ||
+ | 3. x and y have a different number of data points. | ||
− | |||
− | + | ==Examples== | |
− | + | 1.y={6,8,10,13,15,5} | |
− | + | x={1,4,9,11,20,3} | |
+ | STEYX(G1:G6,H1:H6)=1.4350701130 | ||
+ | 2.y={2,9,1,8,17} | ||
+ | x={10,4,11,2,6} | ||
+ | STEYX(A1:A5,B1:B5)=5.944184833375 | ||
+ | 3.y={1,2,4,5,8} | ||
+ | x={10,4,7,5} | ||
+ | STEYX(A1:A5,B1:B4)=NAN | ||
− | + | ==See Also== | |
+ | *[[Manuals/calci/INTERCEPT | INTERCEPT]] | ||
+ | *[[Manuals/calci/LINEST | LINEST ]] | ||
+ | *[[Manuals/calci/PEARSON | PEARSON ]] | ||
− | |||
− | |||
− | |||
− | + | ==References== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 03:22, 20 January 2014
STEYX(y,x)
- is set of dependent values.
- is the set of independent values.
Description
- This function gives the standard error of the regression, which also is known as the standard error of the estimate.
- It is calculates the standard error for the straight line of best fit through a supplied set of and values.
- The standard error for this line provides a measure of the error in the prediction of for an individual .
- The equation for the standard error of the predicted is: SQRT(1/(n-2)[summation (y-y(bar)^2-[summation (x-x(bar)(y-y(bar)]^2/summation(x-x(bar))^2] ,where x(bar) and y(bar) are the sample mean and .
- In is the array of the numeric dependent values and is the array of the independent values.
- The arguments can be be either numbers or names, array,constants or references that contain numbers.
- Suppose the array contains text,logical values or empty cells, like that values are not considered.
- This function will return the result as error when
1. Any one of the argument is nonnumeric. 2. x and y are empty or that have less than three data points. 3. x and y have a different number of data points.
Examples
1.y={6,8,10,13,15,5}
x={1,4,9,11,20,3}
STEYX(G1:G6,H1:H6)=1.4350701130 2.y={2,9,1,8,17} x={10,4,11,2,6} STEYX(A1:A5,B1:B5)=5.944184833375 3.y={1,2,4,5,8} x={10,4,7,5} STEYX(A1:A5,B1:B4)=NAN
See Also