Difference between revisions of "Manuals/calci/FORECAST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
*<math>y</math>  is the dependent array of data.
 
*<math>y</math>  is the dependent array of data.
 
*<math>x</math>  is the independent array of data.
 
*<math>x</math>  is the independent array of data.
 
  
 
==Description==
 
==Description==
*This function gives  the predicted value of the dependent variable  for the specific value, x, of the independent variable  by using a least squares  linear regression to predict y values from x values.  
+
*This function gives  the predicted value of the dependent variable  for the specific value <math>x</math>, of the independent variable  by using a least squares  linear regression to predict <math>y</math> values from <math>x</math> values.  
*In <math>FORECAST(n,y,x), n</math> is the data point to predict a value. <math>y</math> is the dependent array of data to predict the <math>y</math>-value and <math>x</math> is the independent array of data to predict the <math>y</math>-value.
+
*In <math>FORECAST(n,y,x)</math>, <math>n</math> is the data point to predict a value.
*The formula for <math>FORECAST</math> is <math> a+bx</math>   
+
*<math>y</math> is the dependent array of data to predict the <math>y</math>-value and <math>x</math> is the independent array of data to predict the <math>y</math>-value.
 +
*The formula for <math>FORECAST</math> is <math>a+bx</math>   
 
*where <math>a=\bar{y}-b \bar{x}</math>  and  <math> b=\frac{\sum (x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^2}</math>.  
 
*where <math>a=\bar{y}-b \bar{x}</math>  and  <math> b=\frac{\sum (x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^2}</math>.  
*Here <math>\bar{x}</math> and <math>\bar{y}</math> are the sample means of x and y.   
+
*Here <math>\bar{x}</math> and <math>\bar{y}</math> are the sample means of <math>x</math> and <math>y</math>.   
 
*This function will give the result as error when  
 
*This function will give the result as error when  
   1. Any one of the value is nonnumeric.
+
   1. Any one of the value is non-numeric.
   2. The values of x and y are empty or contain a different number of data points.
+
   2. The values of <math>x</math> and <math>y</math> are empty or contain a different number of data points.
   3. The variance of x is zero.
+
   3. The variance of <math>x</math> is zero.
 
 
  
 
==Examples==
 
==Examples==
Line 51: Line 50:
 
*[[Manuals/calci/LINEST  | LINEST]]  
 
*[[Manuals/calci/LINEST  | LINEST]]  
 
*[[Manuals/calci/LOGEST| LOGEST ]]
 
*[[Manuals/calci/LOGEST| LOGEST ]]
 
  
 
==References==
 
==References==

Revision as of 22:57, 23 January 2014

FORECAST(n,y,x)


  • is the data point .
  • is the dependent array of data.
  • is the independent array of data.

Description

  • This function gives the predicted value of the dependent variable for the specific value , of the independent variable by using a least squares linear regression to predict values from values.
  • In , is the data point to predict a value.
  • is the dependent array of data to predict the -value and is the independent array of data to predict the -value.
  • The formula for is
  • where and .
  • Here and are the sample means of and .
  • This function will give the result as error when
 1. Any one of the value is non-numeric.
 2. The values of  and  are empty or contain a different number of data points.
 3. The variance of  is zero.

Examples

Spreadsheet
A B C D E F
1 5 30 -28 -42 51 46
2 9 32 -18 34 14 -1
3 11 15 35 -13 0 29
4 18 28 12 25 60 18
5 32 41 2 5 9 17
6 4 10 4 14 28
  1. =FORECAST(26,A1:A6,B1:B6) = 13.16666667
  2. =FORECAST(18,C1:C4,D1:D4) = 2.119541779
  3. =FORECAST(24,E1:E4,F1:F4) = 31.71054889
  4. =FORECAST(10,C5:F5,C6:E6) = NAN.

See Also

References