Difference between revisions of "Manuals/calci/STDEVP"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''STDEVP'''</font></font></font><font color="#...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> 
+
<div style="font-size:30px">'''STDEVP(n1,n2,n3…)'''</div><br/>
 +
*<math>n1,n2,n3... </math>  are numbers.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''STDEVP'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(N</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''1'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,N2,...)</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''Where N1,N2, ...'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2"> are the arguments . </font></font></font>
+
==Description==
 +
*This function gives the standard deviation based on a entire population  as the  the given data .
 +
*Standard deviation is a quantity expressing by how much the members of a group differ from the mean value for the group.
 +
*It is the  used as a measure of the dispersion or variation in a distribution. 
 +
*It is calculated as the square root of variance.
 +
*In <math>STDEVP(n1,n2,n3...), n1,n2,n3...,</math> are numbers to find the standard deviation.
 +
*Here  <math> n1 </math> is required. <math> n2,n3,...</math> are optional.
 +
*Instead of numbers we can use the single array or a reference of a array.
 +
*<math> STDEVP </math> is defined by the formula:
 +
<math>S.D= \sqrt \frac {\sum(x-\bar{x})^2}{(n-1)} </math> where <math> \bar{x} </math> is the sample mean of x and n is the total numbers in the given data. 
 +
*It is calculated using <math> "n" </math> method.
 +
*This function is considering our given data is the entire population.
 +
*Suppose it should consider the data as the sample of the population, we can use the [[Manuals/calci/STDEV  | STDEV ]] function.  
 +
*For  huge sample sizes the functions <math> STDEV </math> and <math> STDEVP </math> are approximately equal values.
 +
*The arguments can be  either numbers or names, array,constants or references that contain numbers.
 +
*Suppose the array contains text,logical values or empty cells, like that values are not considered.
 +
*When we are entering logical values and text representations of numbers  as directly, then the arguments are counted.
 +
*Suppose the function have to consider the logical values and text representations of numbers in a reference , we can use the [[Manuals/calci/STDEVPA  | STDEVPA ]] function.
 +
*This function will return the result as error when 
 +
    1. Any one of the argument is nonnumeric.
 +
    2. The arguments containing the error values or text that cannot be translated in to numbers.
  
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"> 
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates the standard deviation on the entire population. </font></font></font>
+
==Examples==
 
+
{| class="wikitable"
</div>
+
|+Spreadsheet
----
+
|-
<div id="7SpaceContent" class="zcontent" align="left"
+
! !! A !! B !! C !! D!! E !!F!! G
 
+
|-
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">S D is calculated by the "n" method.</font></font></font>
+
! 1
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The Arguments can be numbers or names, arrays, or references. </font></font></font>
+
| 87 || 121 || 427 ||390 || 110 || ||
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">Empty cells, logical values, text, or error values are ignored. </font></font></font>
+
|-
* ** <font color="#484848"><font face="Arial, sans-serif"><font size="2">STDEVP is counted using this formula: </font></font></font>
+
! 2
** <font color="#484848"></font><br /><br /><font color="#484848"><font face="Arial, sans-serif"><font size="2">Where x is the sample mean average (V1,V2........) and n is the sample size.</font></font></font>
+
| 2 || 2.4 || 3.7 || 14.9 || 28 || 198 || 154.1
 
+
|-
</div>
+
! 3
----
+
| 9  || -4  ||-29  ||38 || 101 || || ||
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
|}
 
 
STDEVP
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''Lets see an example,'''</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">150</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">130</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">165</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">132</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">110</font></font></font>
+
#STDEVP(A1:E1) = 149.0597195757
 +
#STDEVP(A2:G2) = 76.31463871127
 +
#STDEVP(A3:E3) = 44.58250778015
 +
#STDEVP(0,2,8,10,11.7,23.8,32.1,43.7) = 14.389530699435
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">137</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">121</font></font></font>
+
==See Also==
 
+
*[[Manuals/calci/DSTDEV | DSTDEV]]
<font face="Arial, sans-serif"><font size="2"><nowiki>=STDEVPA(B2:B8)is 16.84</nowiki></font></font>
+
*[[Manuals/calci/DSTDEVP  | DSTDEVP ]]
 
+
*[[Manuals/calci/STDEV  | STDEV ]]
</div>
+
*[[Manuals/calci/STDEVA| STDEVA]]
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 150
 
| class="sshl_f" | 16.835337
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f  " | 130
 
| class="SelectTD" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f  " | 165
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f  " | 132
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f  " | 110
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f  " | 137
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="sshl_f " | 121
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
==References==
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:untitled.GIF|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/untitled.GIF]]</div></div>
 
----
 

Revision as of 03:18, 25 January 2014

STDEVP(n1,n2,n3…)


  • are numbers.


Description

  • This function gives the standard deviation based on a entire population as the the given data .
  • Standard deviation is a quantity expressing by how much the members of a group differ from the mean value for the group.
  • It is the used as a measure of the dispersion or variation in a distribution.
  • It is calculated as the square root of variance.
  • In are numbers to find the standard deviation.
  • Here is required. are optional.
  • Instead of numbers we can use the single array or a reference of a array.
  • is defined by the formula:

where is the sample mean of x and n is the total numbers in the given data.

  • It is calculated using Failed to parse (syntax error): {\displaystyle "n" } method.
  • This function is considering our given data is the entire population.
  • Suppose it should consider the data as the sample of the population, we can use the STDEV function.
  • For huge sample sizes the functions and are approximately equal values.
  • The arguments can be either numbers or names, array,constants or references that contain numbers.
  • Suppose the array contains text,logical values or empty cells, like that values are not considered.
  • When we are entering logical values and text representations of numbers as directly, then the arguments are counted.
  • Suppose the function have to consider the logical values and text representations of numbers in a reference , we can use the STDEVPA function.
  • This function will return the result as error when
   1. Any one of the argument is nonnumeric. 
   2. The arguments containing the error values or text that cannot be translated in to numbers.


Examples

Spreadsheet
A B C D E F G
1 87 121 427 390 110
2 2 2.4 3.7 14.9 28 198 154.1
3 9 -4 -29 38 101
  1. STDEVP(A1:E1) = 149.0597195757
  2. STDEVP(A2:G2) = 76.31463871127
  3. STDEVP(A3:E3) = 44.58250778015
  4. STDEVP(0,2,8,10,11.7,23.8,32.1,43.7) = 14.389530699435


See Also

References