Difference between revisions of "Manuals/calci/TDIST"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''TDIST'''</font></font></font><font color="#484...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''TDIST(x,df,t), '''</div><br/>
 +
*<math>x </math>  is the numeric value to find the distribution.
 +
*<math> df </math> is the degrees of freedom.
 +
*<math> t </math> is the number of tails.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''TDIST'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''x'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">, </font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''df'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">, </font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''t'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where 'x' is the numeric value 'df' is an integer and 't' the number of distribution tails to return. </font></font></font>
+
==Description==
 +
*This function gives the value of the t-distribution.
 +
*It is the continuous probability distributions.
 +
*The t-distribution is also called students t-distribution.
 +
*This is the symmetric distribution like the normal distribution.
 +
*It is used when making inferences about a population mean when the population standard deviation is not known.
 +
*In <math> TDIST(x,df,t), x </math> is the numeric value to find the value of the distribution.
 +
*<math> df </math> is the integer which is indicating the number of degrees of freedom and <math> t </math> is indicating the number of distribution tails.
 +
*Suppose t=1, then this distribution is one-tailed distribution and t=2, then this is two-tailed distribution.
 +
*Also t=1, then it is calculated as <math> TDIST=P(X>x) </math>, where <math> X </math> is a random variable that follows the t-distribution.
 +
*And t=2, then it is calculated as <math> TDIST =P(X>x or X<-x)</math>.
 +
*This function will return the result as error
 +
      1. Any one of the argument is nonnumeric.
 +
      2. df<1 and x<0. When we are giving df and t as a decimals, then it is changing in to integers.
  
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function returns the probability for the t-distribution where a numeric value is a calculated value of t. </font></font></font></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">TDIST returns the error value, when df &lt; 1, x&lt;0 or any argument is non numeric</font></font></font>
+
==Examples==
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">In this the 't' value must be 1 or 2.</font></font></font>
+
#TDIST(1.82,55,1) = 0.037101192599
 +
#TDIST(1.82,55,2) = 0.074202385199
 +
#TDIST(5.9812,75,1)= 3.50350792266e-8
 +
#TDIST(5.9812,75,2) = 7.007015845328e-8
 +
#TDIST(2.4579,20.4,1) = 0.0122238
 +
#TDIST(2.4579,20.4,1.2) = Null
  
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
TDIST
 
  
</div></div>
+
==See Also==
----
+
*[[Manuals/calci/TTEST | TTEST]]
<div id="8SpaceContent" class="zcontent" align="left"><font color="#484848"><font face="Arial, sans-serif"><font size="2">B </font></font></font>
+
*[[Manuals/calci/TINV  | TINV ]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">0.85</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">80</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2"><nowiki>=TDIST(B2,B3,2) is 0.3979</nowiki></font></font></font>
+
==References==
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left"><div>
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="        " | Column2
 
| class="    " | Column3
 
| class="  " |
 
| class="  " | Column4
 
|
 
|- class="odd"
 
| class=" " | Row1
 
| class=" " | 0.85
 
| class="sshl_f" | 0.397862
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class=" " | 80
 
| class="SelectTD" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
|
 
| class="sshl_f" |
 
| class="  " |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| Row4
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
|
 
| class=" " |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| class="sshl_f" | Row5
 
| class="sshl_f" |
 
| class="  " |
 
|
 
|
 
| class="  " |
 
|
 
|- class="even"
 
| class=" " | Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
| class="sshl_f" |
 
|
 
|
 
|}
 
 
 
<div align="left"></div>''''''</div></div>
 
----
 

Revision as of 23:34, 26 January 2014

TDIST(x,df,t),


  • is the numeric value to find the distribution.
  • is the degrees of freedom.
  • is the number of tails.


Description

  • This function gives the value of the t-distribution.
  • It is the continuous probability distributions.
  • The t-distribution is also called students t-distribution.
  • This is the symmetric distribution like the normal distribution.
  • It is used when making inferences about a population mean when the population standard deviation is not known.
  • In is the numeric value to find the value of the distribution.
  • is the integer which is indicating the number of degrees of freedom and is indicating the number of distribution tails.
  • Suppose t=1, then this distribution is one-tailed distribution and t=2, then this is two-tailed distribution.
  • Also t=1, then it is calculated as , where is a random variable that follows the t-distribution.
  • And t=2, then it is calculated as .
  • This function will return the result as error
     1. Any one of the argument is nonnumeric. 
     2. df<1 and x<0. When we are giving df and t as a decimals, then it is changing in to integers.


Examples

  1. TDIST(1.82,55,1) = 0.037101192599
  2. TDIST(1.82,55,2) = 0.074202385199
  3. TDIST(5.9812,75,1)= 3.50350792266e-8
  4. TDIST(5.9812,75,2) = 7.007015845328e-8
  5. TDIST(2.4579,20.4,1) = 0.0122238
  6. TDIST(2.4579,20.4,1.2) = Null


See Also


References