Difference between revisions of "Manuals/calci/FOURIERANALYSIS"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''FOURIERANALYSIS'''(Array, NewTableFlag) where, '''Array '''- Input range should be one or more blocks. ...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''FOURIERANALYSIS(n1,n2,n3,n4,…)'''</div><br/>
 +
*<math>n1,n2,n3,n4…</math> are real numbers.
  
'''FOURIERANALYSIS'''(Array, NewTableFlag)
+
==Description==
 
+
*This function gives the value of the discrete fourier tranform.
where,
+
*Fourier analysis is the study of the way general functions may be represented by sums of simpler trigonometric functions.
 
+
*It converts a set of numbers into another equal sized set of numbers.
'''Array '''- Input range should be one or more blocks.
+
*It is the process of analyzing a complex wave by separating it into a plurality of component wave, each of a particular frequency, amplitude and phase displacement.
 
+
*In <math>FOURIERANALYSIS(n1,n2,n3,n4,…)</math>, <math>n1,n2,n3,n4…</math>are real numbers.
'''NewTableFlag''' - is the TRUE or FALSE.If set as TRUE,the result in new sheet. If NewTableFlag is omitted, it assumed to be FALSE.
+
*But the size of the set to be a power of 2.i.e., n1,n2,n3,... the size of the numbers can be 2,4,8,16....
 
+
*So we can form the Fourier transform of a set of 64 numbers, but not a set of 50  numbers.
</div>
+
*In the discrete Fourier Transform (DFT) decomposes the input time series into a set of cosine functions.
----
+
*It is having the following properties
<div id="1SpaceContent" class="zcontent" align="left">Fourier Analysis is the process of analyzing a complex wave by separating it into a plurality of component wave, each of a particular frequency, amplitude and phase displacement.</div>
+
  1.The transformed data is no longer in the time domain.
----
+
  2. The transformation operates on the whole data set. It is not a point-by-point transformation.
<div id="7SpaceContent" class="zcontent" align="left">
+
  3.The transformed data is complex (not real-valued).
 
+
*So the output of this function is Hermite symmetric, which means that the positive and negative real parts will be identical, and that the positive and negative imaginary parts will be the same, but of opposite sign.
If the number is not complex number, FOURIERANALYSIS returns the NaN.
+
*The formula for the DFT is :<math>x_m=\frac{1}{N}\sum_{k=1}^N A_k *cos(\phi_k+k*\omega*m)</math>  
 
+
where <math>A_k</math> is the amplitude,<math>\phi_k</math> is the phase value in radians.
</div>
+
*<math>\omega</math> is the fundamental or principal radian frequency and <math>\omega</math>=\frac{2\pi}{T}, <math>T</mathis the number of observations in the equally-spaced input time series.<math>N</math> is the is the number of  pairs.
----
+
*This function will give the result as error when
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
  1. any one of the argument is nonnumeric.          
 
+
  2. The number of input value is not a power of 2.
FOURIER ANALYSIS
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
Lets see an example in (Column2, Row3)
 
 
 
<nowiki>=FOURIERANALYSIS(R1C1:R2C2, TRUE)</nowiki>
 
 
 
It returns the result in new sheet(5Sapce).
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="                sshl_f " | 2+4i
 
| class=" " | 8i
 
| 4
 
| class="sshl_f" | 5
 
|- class="even"
 
| class=" " | Row2
 
| class=" " | 6
 
| class=" " | 12+56i
 
| 9
 
| class="sshl_f" | 128
 
|- class="odd"
 
| Row3
 
| class="    " | 12
 
| class="sshl_f" | 5Space
 
| 14
 
| class="sshl_f    " | 15
 
|- class="even"
 
| Row4
 
| 17
 
| class="  SelectTD1 ChangeBGColor SelectTD1" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]  </div>18
 
| class="sshl_f" | 10000
 
| class="  " | 20
 
|- class="odd"
 
| class=" " | Row5
 
| 35
 
| 18
 
| 10027
 
| 168
 
|- class="even"
 
| Row6
 
| NaN
 
| 0.850904
 
| 1.619775
 
| 0.525322
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">
 
 
 
{| class="SpreadSheet blue"
 
|+ <br />Fourier Analysis
 
|- class="even"
 
! Input
 
! Output
 
|- class="odd"
 
| 2+4i
 
| 20+68i
 
|- class="even"
 
| 8i
 
| -52+15.999999999999996i
 
|- class="odd"
 
| 6
 
| -4 -60i
 
|- class="even"
 
| 12+56i
 
| 44 -7.9999999999999964i
 
|}
 
 
 
</div>
 
----
 

Revision as of 02:51, 13 February 2014

FOURIERANALYSIS(n1,n2,n3,n4,…)


  • Failed to parse (syntax error): {\displaystyle n1,n2,n3,n4…} are real numbers.

Description

  • This function gives the value of the discrete fourier tranform.
  • Fourier analysis is the study of the way general functions may be represented by sums of simpler trigonometric functions.
  • It converts a set of numbers into another equal sized set of numbers.
  • It is the process of analyzing a complex wave by separating it into a plurality of component wave, each of a particular frequency, amplitude and phase displacement.
  • In Failed to parse (syntax error): {\displaystyle FOURIERANALYSIS(n1,n2,n3,n4,…)} , Failed to parse (syntax error): {\displaystyle n1,n2,n3,n4…} are real numbers.
  • But the size of the set to be a power of 2.i.e., n1,n2,n3,... the size of the numbers can be 2,4,8,16....
  • So we can form the Fourier transform of a set of 64 numbers, but not a set of 50 numbers.
  • In the discrete Fourier Transform (DFT) decomposes the input time series into a set of cosine functions.
  • It is having the following properties
 1.The transformed data is no longer in the time domain.
 2. The transformation operates on the whole data set. It is not a point-by-point transformation.
 3.The transformed data is complex (not real-valued).
  • So the output of this function is Hermite symmetric, which means that the positive and negative real parts will be identical, and that the positive and negative imaginary parts will be the same, but of opposite sign.
  • The formula for the DFT is :

where is the amplitude, is the phase value in radians.

  • is the fundamental or principal radian frequency and =\frac{2\pi}{T}, is the number of observations in the equally-spaced input time series. is the is the number of pairs.
  • This function will give the result as error when
  1. any one of the argument is nonnumeric.           
  2. The number of input value is not a power of 2.