Difference between revisions of "Manuals/calci/BERNOULLI"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''RANDOMNUMBERGENERATION'''(Number, RandomNumber, Distribution,  NewTableFlag, ProbabilityValue) where, '''N...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''BERNOULLIDISTRIBUTED(k,p)'''</div><br/>
 +
*<math>k</math> represents the number of variables.
 +
*<math>p</math> p is the probability value.
  
'''RANDOMNUMBERGENERATION'''(Number, RandomNumber, Distribution,  NewTableFlag, ProbabilityValue)
+
==Description==
 +
*This function gives the value of the Bernoulli distribution.
 +
*It is  a discrete probability distribution.
 +
*Bernoulli distribution is the theoretical distribution of the number of successes in a finite set of independent trials with a constant probability of success.
 +
*The Bernoulli distribution is simply BINOM(1,P).
 +
*This distribution best describes all situations where a  trial  is made resulting in either  success or failure, such as when tossing a coin, or when modeling the success or failure.
 +
*<math>BERNOULLIDISTRIBUTED(k,p)</math> ,<math>k</math>  represents the number of variables.
 +
*<math>p</math> is the probability value. The <math>p</math> vaule is ranges from 0 to 1.
 +
*The Bernoulli distribution is defined by:<math>f(x)=p^x(1-p)^{1-x}</math>, for x=0,1, where <math>p</math> is the probability that a particular event will occur.
 +
*The probability mass function is :<math>f(k,p) = \begin{cases}p &if& k=1\\
 +
                                                            1-p &if &k=0.
 +
                                                  \end{cases}</math>
 +
*This function will give the result as error when
 +
      1. Any one of the argument is nonnumeric.
 +
      2. The value of p<0 or p>1.
  
where,
+
==Examples==
 +
#=BERNOULLIDISTRIBUTED(5,0.5)=1    1    0  0  1,  0    0    0    0    0
 +
#=BERNOULLIDISTRIBUTED(3,0.2)= 0  0  0
  
'''Number '''- represents the number of variables.
+
==See Also==
  
'''RandomNumber '''- represents the number of random number
+
==References==
 
 
'''Distribution '''- represents the distribution method(i.e bernoulli) to create random values.
 
 
 
'''NewTableFlag''' - is the TRUE or FALSE.If set as TRUE,the result in new sheet. If NewTableFlag is omitted, it assumed to be FALSE.
 
 
 
'''ProbabilityValue '''- represents the probability value and should be in range 0 to 1.
 
 
 
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">A theoretical distribution of the number of successes in a finite set of independent trials with a constant probability of success is called bernoulli distribution.</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
Lets see an example in (Column1Row1)
 
 
 
<nowiki>=RANDOMNUMBERGENERATION(3, 4, "Bernoulli", TRUE, 0.5)</nowiki>
 
 
 
RANDOMNUMBERGENERATION returns the result in new sheet(5Space).
 
 
 
<nowiki>=RANDOMNUMBERGENERATION(5, 4, "Bernoulli", TRUE, -1)</nowiki>
 
 
 
RANDOMNUMBERGENERATION returns the #ERROR(ProbabilityValue &lt; 0).
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
RANDOM NUMBER GENERATION : BERNOULLI
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
If Number &lt; 0 or RandomNumber &lt; 0, RANDOMNUMBERGENERATION returns the #ERROR.
 
 
 
RANDOMNUMBERGENERATION returns the #ERROR, if ProbabilityValue &lt; 0 or ProbabilityValue &gt; 1.
 
 
 
</div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|+ Default Calci
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 5Space
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| class="  " | Row2
 
| class="    " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="odd"
 
| Row3
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| Row4
 
| class="sshl_f" | #ERROR
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="odd"
 
| class=" " | Row5
 
| class="  SelectTD1 ChangeBGColor SelectTD1" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]  </div>
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| Row6
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|}
 
 
 
{|
 
| <span align="left">[[Image:calci1.gif]]</span>
 
|
 
|
 
[[Image:bold.gif]]
 
|
 
[[Image:italic.gif]]
 
|
 
[[Image:normal.gif]]
 
|
 
[[Image:underline.gif]]
 
|
 
[[Image:border.gif]]
 
|
 
[[Image:numbers.gif]]
 
|
 
[[Image:sort.gif]]
 
|
 
[[Image:formatcells.gif]]
 
|
 
[[Image:graphs.gif]]
 
| $
 
|}
 
 
 
</div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">
 
 
 
{| class="SpreadSheet blue"
 
|+ Random Number Generation<br />Bernoulli Distribution
 
|- class="even"
 
| 0
 
| 0
 
| 0
 
|- class="odd"
 
| 0
 
| 0
 
| 0
 
|- class="even"
 
| 0
 
| 1
 
| 1
 
|- class="odd"
 
| 0
 
| 0
 
| 1
 
|}
 
 
 
</div>
 
----
 

Revision as of 22:47, 13 February 2014

BERNOULLIDISTRIBUTED(k,p)


  • represents the number of variables.
  • p is the probability value.

Description

  • This function gives the value of the Bernoulli distribution.
  • It is a discrete probability distribution.
  • Bernoulli distribution is the theoretical distribution of the number of successes in a finite set of independent trials with a constant probability of success.
  • The Bernoulli distribution is simply BINOM(1,P).
  • This distribution best describes all situations where a trial is made resulting in either success or failure, such as when tossing a coin, or when modeling the success or failure.
  • , represents the number of variables.
  • is the probability value. The vaule is ranges from 0 to 1.
  • The Bernoulli distribution is defined by:, for x=0,1, where is the probability that a particular event will occur.
  • The probability mass function is :
  • This function will give the result as error when
      1. Any one of the argument is nonnumeric.
      2. The value of p<0 or p>1. 

Examples

  1. =BERNOULLIDISTRIBUTED(5,0.5)=1 1 0 0 1, 0 0 0 0 0
  2. =BERNOULLIDISTRIBUTED(3,0.2)= 0 0 0

See Also

References