Difference between revisions of "Manuals/calci/FISHERINV"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<div style="font-size:30px">'''FISHERINV(y)'''</div><br/>
 
<div style="font-size:30px">'''FISHERINV(y)'''</div><br/>
 
*<math>y</math> is the number.
 
*<math>y</math> is the number.
 +
 
==Description==
 
==Description==
 
*This function gives the inverse of the Fisher transformation.
 
*This function gives the inverse of the Fisher transformation.
Line 8: Line 9:
 
*A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.  
 
*A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.  
 
  This function will give the result as error when the <math>y</math> value is non-numeric.
 
  This function will give the result as error when the <math>y</math> value is non-numeric.
 +
 +
==ZOS Section==
 +
*The syntax is to calculate FISHERINV in ZOS is <math>FISHERINV(y)</math>.
 +
**<math>y</math> is the number.
 +
*For e.g.,fisherinv(0.4521..0.507..0.01)
  
 
==Examples==
 
==Examples==

Revision as of 23:42, 17 June 2014

FISHERINV(y)


  • is the number.

Description

  • This function gives the inverse of the Fisher transformation.
  • We use this to test the correlations between set of data.
  • The Inverse of the Fisher transformation is: i.e , then
  • It can be used to construct a confidence interval.
  • A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.
This function will give the result as error when the  value is non-numeric.

ZOS Section

  • The syntax is to calculate FISHERINV in ZOS is .
    • is the number.
  • For e.g.,fisherinv(0.4521..0.507..0.01)

Examples

  1. FISHERINV(0.6389731838) = 0.56419999998
  2. FISHERINV(0) = 0
  3. FISHERINV(0.1234) = 0.1227774315035342
  4. FISHERINV(1) = 0.761594155955765
  5. FISHERINV(-0.4296) = -0.4049869686465480

See Also

References

Fisher Distribution