Difference between revisions of "Manuals/calci/LN"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<div style="font-size:30px">'''LN(n)'''</div><br/>
+
<div style="font-size:30px">'''LN(number)'''</div><br/>
*where <math>n</math> is the positive real number.
+
*where <math>number</math> is the any positive real number.
  
 
==Description==
 
==Description==
Line 13: Line 13:
 
*The <math>ln(x)</math> is the inverse function of the exponential function <math>e^{ln(x)}=x</math> if <math>x>0</math>.
 
*The <math>ln(x)</math> is the inverse function of the exponential function <math>e^{ln(x)}=x</math> if <math>x>0</math>.
 
*<math>ln(e^x)=x</math>
 
*<math>ln(e^x)=x</math>
 +
 +
==ZOS Section==
 +
*The syntax is to calculate Natural logarithm in ZOS is <math>LN(number)</math>.
 +
***where <math>number</math> is the any positive real number.
 +
*For e.g.,LN(20..23)
  
 
==Examples==
 
==Examples==
Line 26: Line 31:
 
*[[Manuals/calci/LOG | LOG]]
 
*[[Manuals/calci/LOG | LOG]]
 
*[[Manuals/calci/EXP | EXP]]
 
*[[Manuals/calci/EXP | EXP]]
*[[Manuals/calci/IML  | IML]]
 
  
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Natural_logarithm  Natural Logarithm]
 
[http://en.wikipedia.org/wiki/Natural_logarithm  Natural Logarithm]

Revision as of 23:47, 18 June 2014

LN(number)


  • where is the any positive real number.

Description

  • This function gives the Natural Logarithm of a number.
  • is the logarithm in which the base is the irrational number (= 2.71828...).
  • For example,
  • It was formely also called Hyperbolic logarithm.
  • And also called Napierian logarithm.
  • The constant is called Euler's number.
  • The Natural Logarithm is denoted by or .
  • where is the Positive real number.
  • The is the inverse function of the exponential function if .

ZOS Section

  • The syntax is to calculate Natural logarithm in ZOS is .
      • where is the any positive real number.
  • For e.g.,LN(20..23)

Examples

  • =LN(15) = 2.708050201
  • =LN(8.3) = 2.116255515
  • =LN(1) = 0
  • =LN(0) = INFINITY
  • =LN(-20) = NAN
  • =LN(exp(5)) = 5
  • =EXP(LN(7)) = 7

See Also

References

Natural Logarithm