Difference between revisions of "Manuals/calci/IMLOG2"

From ZCubes Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
==See Also==
 
==See Also==
 
*[[Manuals/calci/IMLOG10  | IMLOG10 ]]
 
*[[Manuals/calci/IMLOG10  | IMLOG10 ]]
*[[Manuals/calci/LOG2 | LOG2 ]]
+
*[[Manuals/calci/LOG10 | LOG10 ]]
 
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
 
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
  
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Binary_logarithm  Binary Logarithm]
 
[http://en.wikipedia.org/wiki/Binary_logarithm  Binary Logarithm]

Revision as of 23:20, 24 June 2014

IMLOG2(Complexnumber)


  • is of the form

Description

  • This function gives the binary logarithm of a complex number.
  • , where Complexnumber is in the form of . i.e. & are the real numbers.
  • And is the imaginary unit ..
  • Binary logarithm is the inverse function of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n ↦ 2n} .
  • Log base 2 is called Binary logarithm.
  • To find the Binary logarithm of a complex number we have to calculate from the natural logarithm.
  • So .
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS Section

  • The syntax is to calculate Binary logarithm of a complex number is .
    • is of the form .
  • For e.g imlog2("2.1-3.5i")

Examples

  1. =IMLOG2("2+3i") = 1.85021985921295+1.41787163085485i
  2. =IMLOG2("5-6i") = 2.96536866900967-1.26388460522614i
  3. =IMLOG2("15") = 3.90689059590921
  4. =IMLOG2("11i") = 3.45943161890355+2.26618007108801i
  5. =IMLOG2("0") = NULL

See Also

References

Binary Logarithm