Difference between revisions of "Manuals/calci/ERF"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<div style="font-size:30px">'''ERF(ll,ul)'''</div><br/>
+
<div style="font-size:30px">'''ERF(a,b,accuracy)'''</div><br/>
*<math>ll</math> is the lower limit and <math> ul </math> is the upper limit.
+
*<math>a</math> is the lower limit and <math> b </math> is the upper limit.
 
+
*<math>accuracy</math>  gives accurate value of the solution
  
 
==Description==
 
==Description==
 
*This function gives the value of the error function .  
 
*This function gives the value of the error function .  
 
*Error function is the special function which is encountered in integrating the normal distribution.
 
*Error function is the special function which is encountered in integrating the normal distribution.
*In <math>ERF(ll,ul),ll</math> is the lower limit of the integrating function and <math>ul</math> is the upper limit of the integrating function.
+
*In <math>ERF(a,b,accuracy),<math>a</math> is the lower limit of the integrating function and <math>b</math> is the upper limit of the integrating function.
*Also <math>ul</math> is optional. When we are omitting the <math>ul</math> value, then the  integral of the error function between 0 and the given <math>ll</math> value is returned otherwise it will consider the given <math>ll</math> and <math>ul</math> values.  
+
*Also <math>b</math> is optional. When we are omitting the <math>b</math> value, then the  integral of the error function between 0 and the given <math>a</math> value is returned otherwise it will consider the given <math>a</math> and <math>b</math> values.  
 
*This function is also called Gauss error function.
 
*This function is also called Gauss error function.
 
*<math>ERF </math>is defined by:<math>ERF(z)=\frac {2}{\sqrt{\pi}}\int\limits_{0}^{z}e^{-t^2} dt</math>         
 
*<math>ERF </math>is defined by:<math>ERF(z)=\frac {2}{\sqrt{\pi}}\int\limits_{0}^{z}e^{-t^2} dt</math>         
Line 14: Line 14:
 
*This function will return the result as error when  
 
*This function will return the result as error when  
 
  1.any one of the argument is non-numeric.
 
  1.any one of the argument is non-numeric.
  2.<math>ll</math> or <math>ul</math> is negative.
+
  2.<math>a</math> or <math>b</math> is negative.
 +
 
 +
==ZOS Section==
 +
*The syntax is to calculate error function in ZOS is <math>ERF(a,b,accuracy)</math>.
 +
**<math>a</math> is the lower limit and <math> b </math> is the upper limit.
 +
**<math>accuracy</math>  gives accurate value of the solution.
 +
*For e.g.,erf(2,3),erf(2,3,0.001)
  
 
==Examples==
 
==Examples==

Revision as of 02:11, 3 July 2014

ERF(a,b,accuracy)


  • is the lower limit and is the upper limit.
  • gives accurate value of the solution

Description

  • This function gives the value of the error function .
  • Error function is the special function which is encountered in integrating the normal distribution.
  • In is the lower limit of the integrating function and is the upper limit of the integrating function.
  • Also is optional. When we are omitting the value, then the integral of the error function between 0 and the given value is returned otherwise it will consider the given and values.
  • This function is also called Gauss error function.
  • is defined by:
  • .
  • In this case is the lower limit and is the upper limit.
  • This function will return the result as error when
1.any one of the argument is non-numeric.
2. or  is negative.

ZOS Section

  • The syntax is to calculate error function in ZOS is .
    • is the lower limit and is the upper limit.
    • gives accurate value of the solution.
  • For e.g.,erf(2,3),erf(2,3,0.001)

Examples

  1. ERF(1,2)=0.15262153
  2. ERF(3,2)=-0.004655645
  3. ERF(0,1)=0.842700735
  4. ERF(5)=1
  5. ERF(-3)=NAN

See Also

References

Error Function