Difference between revisions of "Manuals/calci/CHOLESKY"

From ZCubes Wiki
Jump to navigation Jump to search
Line 17: Line 17:
  
 
==Examples==
 
==Examples==
CHOLESKY([[16,32,12],[12, 18, 0],[ -5, 0, 11]])  
+
1. =CHOLESKY([[16,32,12],[12, 18, 0],[ -5, 0, 11]])  
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 30: Line 30:
 
|}
 
|}
  
CHOLESKY([[25, 15, -5],[15, 18, 0],[ -5, 0, 11]])
+
2. =CHOLESKY([[25, 15, -5],[15, 18, 0],[ -5, 0, 11]])
  
 
{| class="wikitable"
 
{| class="wikitable"

Revision as of 22:58, 8 April 2015

CHOLESKY(arr)


  • is the array of numeric elements

Description

  • This function gives the value of Cholesky factorization.
  • It is called Cholesky Decomposition or Cholesky Factorization.
  • The Cholesky Factorization is only defined for symmetric or Hermitian positive definite matrices.
  • Every positive definite matrix A can be factored as =

where

 is lower triangular with positive diagonal elements
 is is the conjugate transpose value of 
  • Every Hermitian positive-definite matrix has a unique Cholesky decomposition.
  • Here , is set of values to find the factorization value.
  • Partition matrices in as =

ZOS Section

Examples

1. =CHOLESKY([[16,32,12],[12, 18, 0],[ -5, 0, 11]])

Result
4 0 0
3 3 0
-1.25 1.25 2.80624

2. =CHOLESKY([[25, 15, -5],[15, 18, 0],[ -5, 0, 11]])

Result
5 0 0
3 3 0
-1 1 3

See Also