Difference between revisions of "Manuals/calci/CHOLESKY"

From ZCubes Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
*The Cholesky Factorization is only defined for symmetric or Hermitian positive definite matrices.
 
*The Cholesky Factorization is only defined for symmetric or Hermitian positive definite matrices.
 
*Every positive definite matrix A can be factored as  <math>A</math> = <math>LL^{T}</math>
 
*Every positive definite matrix A can be factored as  <math>A</math> = <math>LL^{T}</math>
where
 
 
  <math>L</math> is lower triangular with positive diagonal elements
 
  <math>L</math> is lower triangular with positive diagonal elements
 
  <math>L^{T}</math> is is the conjugate transpose value of <math>L</math>
 
  <math>L^{T}</math> is is the conjugate transpose value of <math>L</math>
 
*Every Hermitian positive-definite matrix  has a unique Cholesky decomposition.
 
*Every Hermitian positive-definite matrix  has a unique Cholesky decomposition.
 
*Here <math>CHOLESKY(arr)</math>, <math>arr</math> is set of values to find the factorization value.
 
*Here <math>CHOLESKY(arr)</math>, <math>arr</math> is set of values to find the factorization value.
*Partition matrices in as <math>A</math> = <math>LL^{T}</math>  
+
*Partition matrices in <math>A</math> = <math>LL^{T}</math> is
 +
<math>
 +
\begin{bmatrix}
 +
a_{11} & A_{21}^{T}\\
 +
A_{21} & A_{22}
 +
\end{bmatrix}
 +
=
 +
\begin{bmatrix}
 +
l_{11} & 0\\
 +
L_{21} & L_{22}
 +
\end{bmatrix}
 +
 
 +
\begin{bmatrix}
 +
l_{11} & L_{21}^{T}\\
 +
0  & L_{22}^{T}
 +
\end{bmatrix}
 +
=
 +
\begin{bmatrix}
 +
l_{11}^{2} & L_{11}L_{21}^{T}\\
 +
L_{11}L_{21} & L_{21}L_{21}^{T} + L_{22}L_{22}^{T}
 +
\end{bmatrix}
 +
</math>
  
 
==ZOS Section==
 
==ZOS Section==

Revision as of 05:20, 10 April 2015

CHOLESKY(arr)


  • is the array of numeric elements

Description

  • This function gives the value of Cholesky factorization.
  • It is called Cholesky Decomposition or Cholesky Factorization.
  • The Cholesky Factorization is only defined for symmetric or Hermitian positive definite matrices.
  • Every positive definite matrix A can be factored as =
 is lower triangular with positive diagonal elements
 is is the conjugate transpose value of 
  • Every Hermitian positive-definite matrix has a unique Cholesky decomposition.
  • Here , is set of values to find the factorization value.
  • Partition matrices in = is

ZOS Section

Examples

1. =CHOLESKY([[16,32,12],[12, 18, 0],[ -5, 0, 11]])

Result
4 0 0
3 3 0
-1.25 1.25 2.80624

2. =CHOLESKY([[25, 15, -5],[15, 18, 0],[ -5, 0, 11]])

Result
5 0 0
3 3 0
-1 1 3

See Also