Difference between revisions of "Manuals/calci/ANTISYMMETRIC"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''ANTISYMMETRIC'''</div><br/>")
 
Line 1: Line 1:
<div style="font-size:30px">'''ANTISYMMETRIC'''</div><br/>
+
<div style="font-size:30px">'''MATRIX("ANTISYMMETRIC",order)'''</div><br/>
 +
*<math> order </math>  is the order of the Anti diagonal matrix.
 +
 
 +
==Description==
 +
*This function gives the matrix of order 3 which is satisfying the anti symmetric properties.
 +
*An antisymmetric matrix is a square matrix that satisfies the identity A=-A^(T)  ,where A^(T) is the matrix transpose.
 +
*For example, A= <math>\begin{bmatrix}
 +
0 & -1 \\
 +
1 & 0 \\
 +
\end{bmatrix}</math>
 +
*So the form of anti symmetric is  <math>\begin{bmatrix}
 +
0 & a12 & a13 \\
 +
-a12 & 0 &  a23 \\
 +
-a13 & -a23 & 0 \\
 +
\end{bmatrix}</math>
 +
*Antisymmetric matrices are commonly called "skew symmetric matrices"  or "antimetric".
 +
*So in CALCI,users can give the syntax as:
 +
*1.MATRIX("anti-symmetric")
 +
*2.MATRIX("antisymmetric")
 +
*2.MATRIX("skewsymmetric")
 +
*3.MATRIX("skew-symmetric)
 +
*Here this is case-insensitive.

Revision as of 11:06, 17 April 2015

MATRIX("ANTISYMMETRIC",order)


  • is the order of the Anti diagonal matrix.

Description

  • This function gives the matrix of order 3 which is satisfying the anti symmetric properties.
  • An antisymmetric matrix is a square matrix that satisfies the identity A=-A^(T) ,where A^(T) is the matrix transpose.
  • For example, A=
  • So the form of anti symmetric is
  • Antisymmetric matrices are commonly called "skew symmetric matrices" or "antimetric".
  • So in CALCI,users can give the syntax as:
  • 1.MATRIX("anti-symmetric")
  • 2.MATRIX("antisymmetric")
  • 2.MATRIX("skewsymmetric")
  • 3.MATRIX("skew-symmetric)
  • Here this is case-insensitive.