Difference between revisions of "Manuals/calci/HADAMARD"
Jump to navigation
Jump to search
Line 26: | Line 26: | ||
1 & -1 & -1 & 1\\ | 1 & -1 & -1 & 1\\ | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
+ | |||
+ | ==Examples== | ||
+ | #MATRIX("hadamard") | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | 1 || -1 || 1 || -1 | ||
+ | |- | ||
+ | | 1 || 1 || -1 || -1 | ||
+ | |- | ||
+ | |1 || -1 ||-1 || 1 | ||
+ | |} | ||
+ | #MATRIX("hadamard",4) | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | 1 || -1 || 1 || -1 ||1 ||-1 ||1 ||-1 | ||
+ | |- | ||
+ | | 1 || 1 || -1 || -1 || 1 || 1 || -1 ||-1 | ||
+ | |- | ||
+ | |1 || -1 ||-1 || 1 || 1 || -1 || -1 || 1 | ||
+ | |- | ||
+ | | 1 || 1 || 1 || 1 || -1 ||-1 ||-1 ||-1 | ||
+ | |- | ||
+ | | 1 || -1 || 1 ||-1 ||-1 || 1 || -1 ||1 | ||
+ | |- | ||
+ | | 1 || 1 || -1 || -1 || -1 || -1 || 1 || 1 | ||
+ | |- | ||
+ | | 1 || -1 || -1 || 1 || -1 ||1 || 1 ||-1 | ||
+ | |} | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/ANTIDIAGONAL| ANTIDIAGONAL]] | ||
+ | *[[Manuals/calci/CONFERENCE| CONFERENCE]] | ||
+ | *[[Manuals/calci/CIRCULANT| CIRCULANT]] | ||
+ | *[[Manuals/calci/HANKEL| HANKEL]] | ||
+ | |||
+ | ==References== |
Revision as of 09:36, 24 April 2015
MATRIX("HADAMARD",order)
- is the order of the hadamard matrix.
Description
- This function gives the matrix satisfying the property of Hadamard.
- A Hadamard matrix is the square matrix with the entries of 1 and -1.
- Also the rows of that matrix are orthogonal.
- So H be a Hadamard matrix of order 2n.
- The transpose of H is closely related to its inverse.
- The equivalent definition for hadamard matrix is:
where is the n × n identity matrix and is the transpose of H.
- So the possible order of the matrix is 1,2 or positive multiple of 4.
- The few examples of hadamard matrices are:
Examples
- MATRIX("hadamard")
1 | 1 | 1 | 1 |
1 | -1 | 1 | -1 |
1 | 1 | -1 | -1 |
1 | -1 | -1 | 1 |
- MATRIX("hadamard",4)
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 |
1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 |
1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 |
1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 |