Difference between revisions of "Manuals/calci/HADAMARD"

From ZCubes Wiki
Jump to navigation Jump to search
Line 26: Line 26:
 
1 & -1 & -1 & 1\\
 
1 & -1 & -1 & 1\\
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>
 +
 +
==Examples==
 +
#MATRIX("hadamard")
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1 || 1
 +
|-
 +
| 1 || -1 || 1 || -1
 +
|-
 +
| 1 || 1 || -1 || -1
 +
|-
 +
|1 || -1 ||-1 || 1
 +
|}
 +
#MATRIX("hadamard",4)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1
 +
|-
 +
| 1 || -1 || 1 || -1 ||1 ||-1 ||1 ||-1
 +
|-
 +
| 1 || 1 || -1 || -1 || 1 || 1 || -1 ||-1
 +
|-
 +
|1 || -1 ||-1 || 1 || 1 || -1 || -1 || 1
 +
|-
 +
| 1 || 1 || 1 || 1 || -1 ||-1 ||-1 ||-1
 +
|-
 +
| 1 || -1 || 1 ||-1 ||-1 || 1 || -1 ||1
 +
|-
 +
| 1 || 1 || -1 || -1 || -1 || -1 || 1 || 1
 +
|-
 +
| 1 || -1 || -1 || 1 || -1 ||1 || 1 ||-1
 +
|}
 +
 +
==See Also==
 +
*[[Manuals/calci/ANTIDIAGONAL| ANTIDIAGONAL]]
 +
*[[Manuals/calci/CONFERENCE| CONFERENCE]]
 +
*[[Manuals/calci/CIRCULANT| CIRCULANT]]
 +
*[[Manuals/calci/HANKEL| HANKEL]]
 +
 +
==References==

Revision as of 09:36, 24 April 2015

MATRIX("HADAMARD",order)


  • is the order of the hadamard matrix.

Description

  • This function gives the matrix satisfying the property of Hadamard.
  • A Hadamard matrix is the square matrix with the entries of 1 and -1.
  • Also the rows of that matrix are orthogonal.
  • So H be a Hadamard matrix of order 2n.
  • The transpose of H is closely related to its inverse.
  • The equivalent definition for hadamard matrix is:
  

where is the n × n identity matrix and is the transpose of H.

  • So the possible order of the matrix is 1,2 or positive multiple of 4.
  • The few examples of hadamard matrices are:

Examples

  1. MATRIX("hadamard")
1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1
  1. MATRIX("hadamard",4)
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

See Also

References