Difference between revisions of "Manuals/calci/KRUSKALWALLISTEST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 36: Line 36:
  
 
==Example==
 
==Example==
{| class="wikitable"
+
{| class="SpreadSheet notepad" id="TABLE4_D1" rcid="TABLE4_D1" title="TABLE4_D1" style="width: auto; position: relative; height: auto;"  
|+Spreadsheet
+
|+  
|-
+
Raw Scores
! !! A !! B !!C
+
 
|-
+
 
! 1
+
 
| 25 || 28 || 30
+
|- class="even" r="1" style="position: relative;"
|-
+
| c="A" style="position: relative; overflow: visible; width: 69px;" Method1
! 2
+
 
| 32 || 34 || 32
+
| c="B" style="position: relative; overflow: visible; width: 71px;" Method2
|-
+
 
! 3
+
| c="C" style="position: relative; overflow: visible; width: 70px;" Method3
| 42  || 45 ||45
+
 
|-
+
 
! 4
+
 
| 52 || 55 ||50
+
 
|-
+
|- class="odd" r="2"
!5
+
| style="width: 69px;" 94
| 60 || 61 ||65
+
 
|}
+
| style="width: 71px;" 82
 +
 
 +
| style="width: 70px;" 89
 +
 
 +
 
 +
|- class="even" r="3"
 +
| style="width: 69px;" 87
 +
 
 +
| style="width: 71px;" 85
 +
 
 +
| style="width: 70px;" 68
 +
 
 +
 
 +
|- class="odd" r="4"
 +
| style="width: 69px;" 90
 +
 
 +
| style="width: 71px;" 79
 +
 
 +
| style="width: 70px;" 72
 +
 
 +
 
 +
|- class="even" r="5"
 +
| style="width: 69px;" 74
 +
 
 +
| style="width: 71px;" 84
 +
 
 +
| style="width: 70px;" 76
 +
 
 +
 
 +
|- class="odd" r="6"
 +
| style="width: 69px;" 86
 +
 
 +
| style="width: 71px;" 61
 +
 
 +
| style="width: 70px;" 69
 +
 
 +
 
 +
|- class="even" r="7"
 +
| style="width: 69px;" 97
 +
 
 +
| style="width: 71px;" 72
 +
 
 +
| style="width: 70px;" 65
 +
 
 +
 
 +
|- class="odd" r="8"
 +
| style="width: 69px;" 0
 +
 
 +
| style="width: 71px;" 80
 +
 
 +
| style="width: 70px;" 0
 +
 
 +
 
 +
|}  
 +
 
 
=KRUSKALWALLISTEST(A1:C5,0.05,TRUE)
 
=KRUSKALWALLISTEST(A1:C5,0.05,TRUE)

Revision as of 14:15, 4 May 2015

KRUSKALWALLISTEST(Array,Confidencelevel,Logicalvalue)


  • is the set of values to find the test statistic.
  • is the value between 0 and 1.
  • is either TRUE or FALSE.

Description

  • This function gives the test statistic value of the Kruskal Wallis test.
  • It is one type of Non parametric test.
  • It is a logical extension of the Wilcoxon-Mann-Whitney Test.
  • The parametric equivalent of the Kruskal-Wallis test is the one-way analysis of variance (ANOVA).
  • This test is used for comparing more than two sample that are independent or not related.
  • It is used to test the null hypothesis that all populations have identical distribution functions against the alternative hypothesis that at least two of the samples differ only with respect to Median.
  • Kruskal–Wallis is also used when the examined groups are of unequal size.
  • When the Kruskal-Wallis test leads to significant results, then at least one of the samples is different from the other samples.
  • The test does not identify where the differences occur or how many differences actually occur.
  • Since it is a non-parametric method, the Kruskal–Wallis test does not assume a normal distribution of the residuals, unlike the analogous one-way analysis of variance.
  • However, the test does assume an identically shaped and scaled distribution for each group, except for any difference in medians.
  • The Kruskal Wallis test data are having the following properties:
  • 1.The data points must be independent from each other.
  • 2.The distributions do not have to be normal and the variances do not have to be equal.
  • 3.The data points must be more than five per sample.
  • 4.All individuals must be selected at random from the population.
  • 5.All individuals must have equal chance of being selected.
  • 6.Sample sizes should be as equal as possible but some differences are allowed.
  • Steps for Kruskal Wallis Test:
    • 1. Define Null and Alternative Hypotheses:
  • Null Hypotheses:There is no difference between the conditions.
  • Alternative Hypotheses:There is a difference between the conditions.
    • 2.State Alpha:Alpha=0.05.
    • 3.Calculate degrees of freedom:df = k – 1, where k = number of groups.
    • 4.State Decision Rule:From the Chi squared table calculate the critical value.
  • Suppose the is greater than the critical value then reject the null hypothesis
    • 5.Calculate the Test Statistic:
    • 6.State Results:In this step we have to take a decision of null hypothesis either accept or reject depending on the critical value table.
    • 7.State Conclusion:To be significant, our obtained H has to be equal to or LESS than this critical value.

Example

Raw Scores
c="A" style="position: relative; overflow: visible; width: 69px;" Method1 c="B" style="position: relative; overflow: visible; width: 71px;" Method2 c="C" style="position: relative; overflow: visible; width: 70px;" Method3



style="width: 69px;" 94 style="width: 71px;" 82 style="width: 70px;" 89


style="width: 69px;" 87 style="width: 71px;" 85 style="width: 70px;" 68


style="width: 69px;" 90 style="width: 71px;" 79 style="width: 70px;" 72


style="width: 69px;" 74 style="width: 71px;" 84 style="width: 70px;" 76


style="width: 69px;" 86 style="width: 71px;" 61 style="width: 70px;" 69


style="width: 69px;" 97 style="width: 71px;" 72 style="width: 70px;" 65


style="width: 69px;" 0 style="width: 71px;" 80 style="width: 70px;" 0


=KRUSKALWALLISTEST(A1:C5,0.05,TRUE)