Difference between revisions of "Manuals/calci/TOEPLITZ"
Jump to navigation
Jump to search
Line 17: | Line 17: | ||
<math>\begin{bmatrix} | <math>\begin{bmatrix} | ||
a_{0} & a_{-1} & a_{-2} & \ldots & \ldots &a_{-n+1} \\ | a_{0} & a_{-1} & a_{-2} & \ldots & \ldots &a_{-n+1} \\ | ||
− | a_{1} & a_0 & a_{-1} & | + | a_{1} & a_0 & a_{-1} & \cdots & \ddots & & \vdots \\ |
− | a_{2} & a_{1} & \ddots & \ddots & \ddots& \vdots \\ | + | a_{2} & a_{1} & \cdots& \ddots & \ddots & \ddots& \vdots \\ |
\vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2}\\ | \vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2}\\ | ||
\vdots & & \ddots & a_{1} & a_{0}& a_{-1} \\ | \vdots & & \ddots & a_{1} & a_{0}& a_{-1} \\ | ||
Line 25: | Line 25: | ||
*The property of Toeplitz matrix is :Toeplitz matrices are persymmetric. | *The property of Toeplitz matrix is :Toeplitz matrices are persymmetric. | ||
*Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric. | *Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric. | ||
− | *Toeplitz matrices commute asymptotically. | + | *Toeplitz matrices commute asymptotically. |
==Examples== | ==Examples== |
Revision as of 09:39, 5 May 2015
MATRIX("TOEPLITZ",order)
- is the size of the Toeplitz matrix.
Description
- This function gives the matrix of order 3 with the property of toeplitz matrix.
- A Toeplitz matrix is a matrix with the constant values along negative sloping diagonals(descending diagonal from left to right).
- If the i,j element of A is denoted , then we have
.
- Any nxn matrix A of the form:
- The property of Toeplitz matrix is :Toeplitz matrices are persymmetric.
- Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric.
- Toeplitz matrices commute asymptotically.
Examples
- MATRIX("toeplitz",15,1..10)
A =
\begin{bmatrix}
a_{0} & a_{-1} & a_{-2} & \ldots & \ldots &a_{-n+1} \\ a_{1} & a_0 & a_{-1} & \ddots & & \vdots \\ a_{2} & a_{1} & \ddots & \ddots & \ddots& \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2}\\ \vdots & & \ddots & a_{1} & a_{0}& a_{-1} \\
a_{n-1} & \ldots & \ldots & a_{2} & a_{1} & a_{0} \end{bmatrix}