Difference between revisions of "Manuals/calci/BIDIAGONAL"
Jump to navigation
Jump to search
Line 24: | Line 24: | ||
\end{pmatrix} </math> | \end{pmatrix} </math> | ||
*The syntax of lower and upper bidiagonal matrices are MATRIX("lowerbidiagonal") or MATRIX("lower-bidiagonal") and MATRIX("upperbidiagonal") or MATRIX("upper-bidiagonal") | *The syntax of lower and upper bidiagonal matrices are MATRIX("lowerbidiagonal") or MATRIX("lower-bidiagonal") and MATRIX("upperbidiagonal") or MATRIX("upper-bidiagonal") | ||
+ | |||
+ | ==Examples== | ||
+ | *1.MATRIX("bidiagonal") | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | -63 || 97 || 0 | ||
+ | |- | ||
+ | | 0 || 44 || 65 | ||
+ | |- | ||
+ | | 0 || 0 || 97 | ||
+ | |} | ||
+ | *2.MATRIX("bidiagonal",5) | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | 77 || -7 || 0 || 0 || 0 | ||
+ | |- | ||
+ | | 0 || 83 || 56 || 0 || 0 | ||
+ | |- | ||
+ | | 0 || 0 || 2 || -88 || 0 | ||
+ | |- | ||
+ | | 0 || 0 || 0 || -88 || -59 | ||
+ | |- | ||
+ | | 0 || 0 || 0 || 0 || 87 | ||
+ | |} | ||
+ | *3.MATRIX("upper-bidiagonal") | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | -5 || 40 || 0 | ||
+ | |- | ||
+ | | 0 || 5 || 71 | ||
+ | |- | ||
+ | | 0 || 0 || 19 | ||
+ | |} | ||
+ | *4.MATRIX("lowerbidiagonal",4) | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | 87 || 0 || 0 || 0 | ||
+ | |- | ||
+ | | 8 || -13 || 0 || 0 | ||
+ | |- | ||
+ | | 0 || -70 || 82 || 0 | ||
+ | |- | ||
+ | | 0 || 0 || 94 || -33 | ||
+ | |} | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/PERSYMMETRIC| PERSYMMETRIC]] | ||
+ | *[[Manuals/calci/PASCAL| PASCAL]] | ||
+ | *[[Manuals/calci/TRIANGULAR| TRIANGULAR]] | ||
+ | |||
+ | ==References== |
Revision as of 12:23, 5 May 2015
MATRIX("BIDIAGONAL",order)
- is the size of the Bidiagonal matrix.
Description
- This function returns the matrix with the property of bidiagonal.
- A bidiagonal matrix has non zero entries only on the main bidiagonal and either the first super-diagonal and first sub-diagonal.
- In Calci,users will get different types of bidiagonal matrices.
- There are two types are there lower bidiagonal and upper bidiagonal.
- When the diagonal below the main diagonal has the non-zero entries the matrix is lower bidiagonal.
- When the diagonal above the main diagonal has the non-zero entries the matrix is upper bidiagonal.
- The example of lower bidiagonal matrix is:
- The example of a upper bidiagonal matrix is:
- The syntax of lower and upper bidiagonal matrices are MATRIX("lowerbidiagonal") or MATRIX("lower-bidiagonal") and MATRIX("upperbidiagonal") or MATRIX("upper-bidiagonal")
Examples
- 1.MATRIX("bidiagonal")
-63 | 97 | 0 |
0 | 44 | 65 |
0 | 0 | 97 |
- 2.MATRIX("bidiagonal",5)
77 | -7 | 0 | 0 | 0 |
0 | 83 | 56 | 0 | 0 |
0 | 0 | 2 | -88 | 0 |
0 | 0 | 0 | -88 | -59 |
0 | 0 | 0 | 0 | 87 |
- 3.MATRIX("upper-bidiagonal")
-5 | 40 | 0 |
0 | 5 | 71 |
0 | 0 | 19 |
- 4.MATRIX("lowerbidiagonal",4)
87 | 0 | 0 | 0 |
8 | -13 | 0 | 0 |
0 | -70 | 82 | 0 |
0 | 0 | 94 | -33 |