Difference between revisions of "Manuals/calci/MANNWHITNEYUTEST"
Jump to navigation
Jump to search
Line 33: | Line 33: | ||
==Example== | ==Example== | ||
{| class="wikitable" | {| class="wikitable" | ||
− | |+ | + | |+ |
+ | | X || Y | ||
|- | |- | ||
− | + | | 87 || 71 | |
|- | |- | ||
− | + | | 72 || 42 | |
− | | | ||
|- | |- | ||
− | + | | 94 || 69 | |
− | | | ||
|- | |- | ||
− | + | | 49 || 97 | |
− | | | ||
|- | |- | ||
− | + | | 56 || 78 | |
− | | | ||
|- | |- | ||
− | + | | 88 || 84 | |
− | | 17 || 16 | + | |- |
+ | | 74 || 57 | ||
+ | |- | ||
+ | | 61 || 64 | ||
+ | |- | ||
+ | | 80 || 78 | ||
+ | |- | ||
+ | | 52 || 73 | ||
+ | |- | ||
+ | | 75 || 85 | ||
+ | |- | ||
+ | | 0 || 91 | ||
+ | |} | ||
+ | |||
+ | #=MANNWHITNEYUTEST(A1:A12,B1:B13,0.05,true) | ||
+ | |||
+ | {| class="SpreadSheet " id="TABLE1" rcid="TABLE1" title="TABLE1" style="width: auto; position: relative; height: auto;" | ||
+ | |+ | ||
+ | |+ Mann Whitney U Test | ||
+ | Ranks | ||
+ | |||
+ | |- class="even" r="1" style="position: relative;" | | ||
+ | | c="A" style="position: relative; overflow: visible; width: 28px;" | X | ||
+ | | c="B" style="position: relative; overflow: visible; width: 49px;" | Y | ||
+ | |||
+ | |- class="odd" r="2" | ||
+ | | style="width: 26px;" | 19 | ||
+ | | style="width: 49px;" | 9 | ||
+ | |||
+ | |- class="even" r="3" | ||
+ | | style="width: 26px;" | 10 | ||
+ | | style="width: 49px;" | 1 | ||
+ | |||
+ | |- class="odd" r="4" | ||
+ | | style="width: 26px;" | 22 | ||
+ | | style="width: 49px;" | 8 | ||
+ | |||
+ | |- class="even" r="5" | ||
+ | | style="width: 26px;" | 2 | ||
+ | | style="width: 49px;" | 23 | ||
+ | |||
+ | |- class="odd" r="6" | ||
+ | | style="width: 26px;" | 4 | ||
+ | | style="width: 49px;" | 14.5 | ||
+ | |||
+ | |- class="even" r="7" | ||
+ | | style="width: 26px;" | 20 | ||
+ | | style="width: 49px;" | 17 | ||
+ | |||
+ | |- class="odd" r="8" | ||
+ | | style="width: 26px;" | 12 | ||
+ | | style="width: 49px;" | 5 | ||
+ | |||
+ | |- class="even" r="9" | ||
+ | | style="width: 26px;" | 6 | ||
+ | | style="width: 49px;" | 7 | ||
+ | |||
+ | |- class="odd" r="10" | ||
+ | | style="width: 26px;" | 16 | ||
+ | | style="width: 49px;" | 14.5 | ||
+ | |||
+ | |- class="even" r="11" | ||
+ | | style="width: 26px;" | 3 | ||
+ | | style="width: 49px;" | 11 | ||
+ | |||
+ | |- class="odd" r="12" | ||
+ | | style="width: 26px;" | 13 | ||
+ | | style="width: 49px;" | 18 | ||
+ | |||
+ | |- class="even" r="13" | ||
+ | | style="width: 26px;" | 0 | ||
+ | | style="width: 49px;" | 21 | ||
+ | |||
+ | |} | ||
+ | |||
+ | {| class="SpreadSheet notepad" id="TABLE7" rcid="TABLE7" title="TABLE7" style="width: auto; position: relative; height: auto;" | | ||
+ | |+ | ||
+ | |||
+ | |- class="even" r="1" style="position: relative;" | | ||
+ | | c="A" style="position: relative; overflow: visible; width: 58px;" | Ranks | ||
+ | | c="B" style="position: relative; overflow: visible; width: 27px;" | 127 | ||
+ | | c="C" style="position: relative; overflow: visible; width: 31px;" | 149 | ||
+ | |||
+ | |- class="odd" r="2" | ||
+ | | style="width: 58px;" | Median | ||
+ | | style="width: 27px;" | 74 | ||
+ | | style="width: 31px;" | 75.5 | ||
+ | |||
+ | |- class="even" r="3" | ||
+ | | style="width: 58px;" | n | ||
+ | | style="width: 27px;" | 11 | ||
+ | | style="width: 31px;" | 12 | ||
+ | |||
+ | |} | ||
+ | |||
+ | {| class="SpreadSheet notepad" id="TABLE8" rcid="TABLE8" title="TABLE8" style="width: auto; position: relative; height: auto;" | | ||
+ | |+ | ||
+ | RESULTS | ||
+ | |||
+ | |- class="even" r="1" style="position: relative;" | | ||
+ | | c="A" style="position: relative; overflow: visible; width: 54px;" | | ||
+ | |||
+ | |- class="odd" r="2" | ||
+ | | style="width: 54px;" | U1 | ||
+ | | style="width: 161px;" | 71 | ||
+ | |||
+ | |- class="even" r="3" | ||
+ | | style="width: 54px;" | U2 | ||
+ | | style="width: 161px;" | 61 | ||
+ | |||
+ | |- class="odd" r="4" | ||
+ | | style="width: 54px;" | U | ||
+ | | style="width: 161px;" | 61 | ||
+ | |||
+ | |- class="even" r="5" | ||
+ | | style="width: 54px;" | E(U1) | ||
+ | | style="width: 161px;" | 132 | ||
+ | |||
+ | |- class="odd" r="6" | ||
+ | | style="width: 54px;" | E(U2) | ||
+ | | style="width: 161px;" | 144 | ||
+ | |||
+ | |- class="even" r="7" | ||
+ | | style="width: 54px;" | E(U) | ||
+ | | style="width: 161px;" | 66 | ||
+ | |||
+ | |- class="odd" r="8" | ||
+ | | style="width: 54px;" | StdDev | ||
+ | | style="width: 161px;" | 16.24807680927192 | ||
+ | |||
+ | |- class="even" r="9" | ||
+ | | style="width: 54px;" | a | ||
+ | | style="width: 161px;" | 0.05 | ||
+ | |||
+ | |- class="odd" r="10" | ||
+ | | style="width: 54px;" | z | ||
+ | | style="width: 161px;" | -0.3077287274483318 | ||
+ | |||
+ | |- class="even" r="11" | ||
+ | | style="width: 54px;" | p | ||
+ | | style="width: 161px;" | 0.7582891742833224 | ||
+ | |||
|} | |} | ||
− |
Revision as of 13:57, 6 May 2015
MANNWHITNEYUTEST(xRange,yRange,Confidencelevel,Logicalvalue,Testtype)
- is the array of x values.
- is the array of y values.
- is the value between 0 and 1.
- is either TRUE or FALSE.
- is the type of the test.
Description
- This function gives the test statistic value of the Mann Whitey U test.
- It is one type of Non parametric test.It is also called Mann–Whitney–Wilcoxon,Wilcoxon rank-sum test or Wilcoxon–Mann–Whitney test.
- Using this test we can analyze rank-ordered data.
- This test is alternative to the independent-sample, Student t test, and yields results identical to those obtained from the Wilcoxon Two Independent Samples Test.
- This test is used to compare differences between two independent groups when the dependent variable is either ordinal or continuous, but not normally distributed.
- Mann whitey u test is having the following properties:
- 1.Data points should be independent from each other.
- 2.Data do not have to be normal and variances do not have to be equal.
- 3.All individuals must be selected at random from the population.
- 4.All individuals must have equal chance of being selected.
- 5.Sample sizes should be as equal as possible but for some differences are allowed.
- Suppose the two groups of the populations have distributions with the same shape it can be viewed as a comparison of two medians.With out the assumption the Mann-Whitney test does not compare medians.
- To find statistic value of this test the steps are required:
- 1.For the two observations of values, find the rank all together.
- 2.Add up all the ranks in a first observation.
- 3.Add up all the ranks in a second group.
- 4.Select the larger rank.
- 5.Calculate the number of participants,number of people in each group.
- 6.Calculate the test statistic:
- where and are number of participants and number of people.
- is the larger rank total. is the similar value of .
- 7.State Result: In this step we have to take a decision of null hypothesis either accept or reject depending on the z value using critical value table.
- 8.State Conclusion: To be significant, our obtained U has to be equal to or LESS than this critical value.
Example
X | Y |
87 | 71 |
72 | 42 |
94 | 69 |
49 | 97 |
56 | 78 |
88 | 84 |
74 | 57 |
61 | 64 |
80 | 78 |
52 | 73 |
75 | 85 |
0 | 91 |
- =MANNWHITNEYUTEST(A1:A12,B1:B13,0.05,true)
X | Y |
19 | 9 |
10 | 1 |
22 | 8 |
2 | 23 |
4 | 14.5 |
20 | 17 |
12 | 5 |
6 | 7 |
16 | 14.5 |
3 | 11 |
13 | 18 |
0 | 21 |
Ranks | 127 | 149 |
Median | 74 | 75.5 |
n | 11 | 12 |
U1 | 71 |
U2 | 61 |
U | 61 |
E(U1) | 132 |
E(U2) | 144 |
E(U) | 66 |
StdDev | 16.24807680927192 |
a | 0.05 |
z | -0.3077287274483318 |
p | 0.7582891742833224 |