Difference between revisions of "Manuals/calci/NORMAL"
Jump to navigation
Jump to search
(3 intermediate revisions by one other user not shown) | |||
Line 3: | Line 3: | ||
*<math>m </math> is the mean. | *<math>m </math> is the mean. | ||
*<math>sd</math> is the standard deviation. | *<math>sd</math> is the standard deviation. | ||
− | |||
==Description== | ==Description== | ||
Line 24: | Line 23: | ||
*A normal distribution is calculated by : | *A normal distribution is calculated by : | ||
<math>f(x,\mu,\sigma)=\frac {1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}</math> | <math>f(x,\mu,\sigma)=\frac {1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}</math> | ||
− | where <math>\mu</math> is the mean and <math>\sigma< | + | where <math>\mu</math> is the mean and <math>\sigma</math> is the standard deviaton of the distribution. |
==Examples== | ==Examples== | ||
+ | #=NORMALDISTRIBUTED(250,255,2.5) = 748.545737759758,417.93831835416444,-92.67846228553037,etc | ||
+ | #=NORMALDISTRIBUTED(30,36,20.9) = 7.937852412035841,10.385286729354199,83.54572095198611 etc. | ||
+ | ==Related Videos== | ||
− | + | {{#ev:youtube|1iDyrcpbXt8|280|center|NORMAL}} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |} | ||
− | |||
− | |||
− | |||
− | |||
− | + | ==See Also== | |
− | + | *[[Manuals/calci/NORMDIST | NORMDIST ]] | |
− | + | *[[Manuals/calci/NORMSDIST | NORMSDIST ]] | |
− | + | *[[Manuals/calci/NORMINV | NORMINV ]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | + | ==References== | |
− | + | *[http://stattrek.com/probability-distributions/normal.aspx Normal Distribution] |
Latest revision as of 14:09, 30 June 2015
NORMALDISTRIBUTED(x,m,sd)
- is the value for which distribution is evaluated.
- is the mean.
- is the standard deviation.
Description
- This function gives the value of the normal probability distribution.
- It is the continuous probability distribution.
- The normal distributions are a very important class of statistical distributions.
- All normal distributions are symmetric and have bell-shaped density curves with a single peak.
- The term bell curve is used to describe the mathematical concept called normal distribution.
- It is also called as Gaussian distribution.
- The Normal Distribution has: mean = median = mode
- i.e., This distribution is symmetry about the center.
- Half of values less than the mean and half of values greater than the mean.
- In a normal distribution the probability values are satisfying the following conditions:
1. The total area under the curve is equal to 1 (100%) 2. About 68% of the area under the curve falls within 1 standard deviation. 3. About 95% of the area under the curve falls within 2 standard deviations. 4. About 99.7% of the area under the curve falls within 3 standard deviations.
- In a normal distribution the mean =0 and standard deviation =1,then the distribution is called the standard normal distribution or the unit normal distribution, and a random variable with that distribution is a standard normal deviate.
- It is the only absolutely continuous distribution.
- A normal distribution is calculated by :
where is the mean and is the standard deviaton of the distribution.
Examples
- =NORMALDISTRIBUTED(250,255,2.5) = 748.545737759758,417.93831835416444,-92.67846228553037,etc
- =NORMALDISTRIBUTED(30,36,20.9) = 7.937852412035841,10.385286729354199,83.54572095198611 etc.