Difference between revisions of "Manuals/calci/BIN2DEC"

From ZCubes Wiki
Jump to navigation Jump to search
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=BIN2DEC(number)=
+
=BIN2DEC(number,places)=
  
 
*Where 'number' is the binary number to be converted to decimal number.
 
*Where 'number' is the binary number to be converted to decimal number.
  
 +
*'places' is the number of characters to display the output.
 +
 +
BIN2DEC() converts a binary number to a decimal number.
  
 
== Description ==
 
== Description ==
  
 +
BIN2DEC(number,places)
  
 +
For example, BIN2DEC(101,3) ''returns 005'' as a result.
  
BIN2DEC(number)
+
            BIN2DEC(11110) ''returns 30'' as a result.
  
For example, BIN2DEC(101) ''returns 5'' as a result.
+
*This function is used to convert a binary number to a decimal number.
  
            BIN2DEC(11110) ''returns 30'' as a result.  
+
*Binary number is represented using digits 1 or 0 only. The number can also be entered in text format (e.g "101").
 +
 
 +
*The conversion can be obtained for a binary number upto 17 bits for positive numbers and 10 bits for negative numbers.
  
*BIN2DEC() converts a binary number to decimal number.
+
*The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
  
*Binaray number is represented using digits 1 or 0 only. The number can also be entered in text format (e.g "101").
+
*Positive numbers may be from 0 (000000000) to 130046 (11111111111111110) and negative numbers from -1 (1111111111) to -512 (1000000000).
  
*The conversion can be obtained for a binary number upto 10 bits. The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
+
*A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.  
  
*Positive numbers can be from 0 (000000000) to 511 (0111111111) or negative numbers -1 (1111111111) to -512 (1000000000).
+
*'places' argument can be omitted. Then, Calci displays the octal output with minimum number of characters necessary.
  
*A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.  
+
*'places' is used for padding the output with leading '0's.
  
*A binary number (e.g '101') can be converted to decimal number (base 2) as -
+
*A binary number (e.g '101') is converted to decimal number (base 2) as -
 
  (1*2^2)+(0*2^1)+(1*2^0)=4+0+1= ''5''
 
  (1*2^2)+(0*2^1)+(1*2^0)=4+0+1= ''5''
  
 
*If the number is not a valid number, 'Calci' returns an #ERROR message.
 
*If the number is not a valid number, 'Calci' returns an #ERROR message.
 +
 +
Below are few examples that show the use of combination of functions and get the result in decimal -
 +
 +
1)SUM(BIN2DEC(100),BIN2DEC(101)) ''returns 9'' as a result.
 +
 +
2)AVERAGE(BIN2DEC(100) + BIN2DEC(101)) ''returns 9'' as a result.
 +
 +
3)BIN2DEC(110)+BIN2DEC(101)-BIN2DEC(100) ''returns 7'' as a result.
  
 
== Examples ==
 
== Examples ==
Line 35: Line 50:
 
{| id="TABLE3" class="SpreadSheet blue"
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
|- class="even"
| class="  " | ''Binary Input''
+
| class="  " | '''Binary Input'''
| class="  " | ''Decimal Output''
+
| class="  " | '''Decimal Output'''
  
 
|- class="odd"
 
|- class="odd"
Line 43: Line 58:
  
 
|- class="even"
 
|- class="even"
| class="ssh1_f" | 11110
+
| class="ssh1_f" | 11110,3
| class="sshl_f" | 30
+
| class="sshl_f" | 030
  
 
|- class="odd"
 
|- class="odd"
| class="ssh1_f" | 1111111111
+
| class="ssh1_f" | 1010101010101010
| class="sshl_f" | -1
+
| class="sshl_f" | 43690
  
 
|- class="even"
 
|- class="even"
| class="ssh1_f" | 1111000000
+
| class="ssh1_f" | 1111111111
| class="sshl_f" | -64
+
| class="sshl_f" | 1023
  
 +
|- class="odd"
 +
| class="ssh1_f" | 1111000000
 +
| class="sshl_f" | 960
 +
 +
|- class="even"
 +
| class="ssh1_f" | 1000000000
 +
| class="sshl_f" | 512
  
 
|}
 
|}
 +
 +
==Related Videos==
 +
{{#ev:youtube|tfKe8PPI2zs|280|center|BIN2DEC}}
 +
 +
== See Also ==
 +
 +
*[[Manuals/calci/BIN2HEX| BIN2HEX]]
 +
 +
*[[Manuals/calci/BIN2OCT| BIN2OCT]]
 +
 +
*[[Manuals/calci/DEC2BIN| DEC2BIN]]
 +
 +
*[[Manuals/calci/OCT2BIN| OCT2BIN]]
 +
 +
*[[Manuals/calci/OCT2BIN| HEX2BIN]]
 +
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Binary_number#Conversion_to_and_from_other_numeral_systems Conversion of Binary Numbers]

Latest revision as of 05:51, 8 October 2015

BIN2DEC(number,places)

  • Where 'number' is the binary number to be converted to decimal number.
  • 'places' is the number of characters to display the output.

BIN2DEC() converts a binary number to a decimal number.

Description

BIN2DEC(number,places)

For example, BIN2DEC(101,3) returns 005 as a result.

            BIN2DEC(11110) returns 30 as a result. 
  • This function is used to convert a binary number to a decimal number.
  • Binary number is represented using digits 1 or 0 only. The number can also be entered in text format (e.g "101").
  • The conversion can be obtained for a binary number upto 17 bits for positive numbers and 10 bits for negative numbers.
  • The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
  • Positive numbers may be from 0 (000000000) to 130046 (11111111111111110) and negative numbers from -1 (1111111111) to -512 (1000000000).
  • A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.
  • 'places' argument can be omitted. Then, Calci displays the octal output with minimum number of characters necessary.
  • 'places' is used for padding the output with leading '0's.
  • A binary number (e.g '101') is converted to decimal number (base 2) as -
(1*2^2)+(0*2^1)+(1*2^0)=4+0+1= 5
  • If the number is not a valid number, 'Calci' returns an #ERROR message.

Below are few examples that show the use of combination of functions and get the result in decimal -

1)SUM(BIN2DEC(100),BIN2DEC(101)) returns 9 as a result.

2)AVERAGE(BIN2DEC(100) + BIN2DEC(101)) returns 9 as a result.

3)BIN2DEC(110)+BIN2DEC(101)-BIN2DEC(100) returns 7 as a result.

Examples

Binary Input Decimal Output
100 4
11110,3 030
1010101010101010 43690
1111111111 1023
1111000000 960
1000000000 512

Related Videos

BIN2DEC

See Also

References