Difference between revisions of "Manuals/calci/BIDIAGONAL"

From ZCubes Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by 2 users not shown)
Line 26: Line 26:
  
 
==Examples==
 
==Examples==
*1.MATRIX("bidiagonal")
+
*1.MATRIX("bidiagonal") = 70
 +
*2.MATRIX("bidiagonal",3)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 35: Line 36:
 
| 0 || 0 || 97  
 
| 0 || 0 || 97  
 
|}
 
|}
*2.MATRIX("bidiagonal",5)
+
*3.MATRIX("bidiagonal",5)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 48: Line 49:
 
| 0 || 0 || 0 || 0 || 87  
 
| 0 || 0 || 0 || 0 || 87  
 
|}
 
|}
*3.MATRIX("upper-bidiagonal")
+
*4.MATRIX("upper-bidiagonal",3)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 57: Line 58:
 
| 0 || 0 || 19  
 
| 0 || 0 || 19  
 
|}
 
|}
*4.MATRIX("lowerbidiagonal",4)
+
*5.MATRIX("lowerbidiagonal",4)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 68: Line 69:
 
| 0 || 0 || 94 || -33  
 
| 0 || 0 || 94 || -33  
 
|}
 
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|F9wVeCg03rA|280|center|Banded Matrix, Tri-diagonal Matrix}}
  
 
==See Also==
 
==See Also==
Line 75: Line 80:
  
 
==References==
 
==References==
 +
*[http://en.wikipedia.org/wiki/Bidiagonal_matrix Bidiagonal]

Latest revision as of 00:27, 26 October 2015

MATRIX("BIDIAGONAL",order)


  • is the size of the Bidiagonal matrix.

Description

  • This function returns the matrix with the property of bidiagonal.
  • A bidiagonal matrix has non zero entries only on the main bidiagonal and either the first super-diagonal and first sub-diagonal.
  • In Calci,users will get different types of bidiagonal matrices.
  • There are two types are there lower bidiagonal and upper bidiagonal.
  • When the diagonal below the main diagonal has the non-zero entries the matrix is lower bidiagonal.
  • When the diagonal above the main diagonal has the non-zero entries the matrix is upper bidiagonal.
  • The example of lower bidiagonal matrix is:

  • The example of a upper bidiagonal matrix is:

  • The syntax of lower and upper bidiagonal matrices are MATRIX("lowerbidiagonal") or MATRIX("lower-bidiagonal") and MATRIX("upperbidiagonal") or MATRIX("upper-bidiagonal")

Examples

  • 1.MATRIX("bidiagonal") = 70
  • 2.MATRIX("bidiagonal",3)
-63 97 0
0 44 65
0 0 97
  • 3.MATRIX("bidiagonal",5)
77 -7 0 0 0
0 83 56 0 0
0 0 2 -88 0
0 0 0 -88 -59
0 0 0 0 87
  • 4.MATRIX("upper-bidiagonal",3)
-5 40 0
0 5 71
0 0 19
  • 5.MATRIX("lowerbidiagonal",4)
87 0 0 0
8 -13 0 0
0 -70 82 0
0 0 94 -33

Related Videos

Banded Matrix, Tri-diagonal Matrix

See Also

References