Difference between revisions of "Manuals/calci/PASCAL"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''PASCAL'''</div><br/>")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="font-size:30px">'''PASCAL'''</div><br/>
+
<div style="font-size:30px">'''MATRIX("PASCAL",order)'''</div><br/>
 +
*<math>order</math> is the size of the Pascal matrix.
 +
 
 +
==Description==
 +
*This function returns the matrix of any order  with the property of Pascal.
 +
*The Pascal matrix is an infinite matrix containing the binomial coefficients as its elements.
 +
*To obtain a pascal matrix there are three ways:  as either an upper-triangular matrix(U), a lower-triangular matrix(L), or a symmetric matrix(S).
 +
*Example for these matrices are
 +
<math>L_4 =\begin{pmatrix}
 +
54 & 0 & 0 & 0 \\
 +
20 & 34 & 0 & 0 \\
 +
57 & 89 & -70 & 0 \\
 +
71 & -4 & -52 & 72 \\
 +
\end{pmatrix}</math>
 +
<math>U_4 =\begin{pmatrix}
 +
64 & 22 & -91 & -86 \\
 +
0 & 61 & 62 & -62 \\
 +
0 & 0 & 30 & -81 \\
 +
0 & 0 & 0 & -61 \\
 +
\end{pmatrix}</math>
 +
<math>S_4 =\begin{pmatrix}
 +
41 & 74 & 15 & -47 \\
 +
74 & -16 & 37 & 97 \\
 +
15 & 37 & 24 & -88 \\
 +
-47 & 97 & -88 & -69 \\
 +
\end{pmatrix}</math>
 +
*The amazing  relationship of these matrices are:<math>S_n = L_nU_n</math>.
 +
*And its determinants also 1.i.e.,<math> |S_n|=|L_n|=|U_n|=1 </math>
 +
*The Pascal matrix can actually be constructed by taking the matrix exponential of a special subdiagonal or superdiagonal matrix.
 +
*The elements of the symmetric Pascal matrix are the binomial coefficients, i.e.
 +
<math>S_{ij} = {n \choose r} = \frac{n!}{r!(n-r)!},</math>, where n=i+j, r=i.
 +
*In other words,
 +
<math>S_{ij} = _{i+j}{C}_{i} = \frac{(i+j)!}{(i)!(j)!}</math>.
 +
*Here MATRIX("pascal") is showing the pascal matrix of order 3.
 +
*So users can change the order of the matrix  also.
 +
 
 +
==Examples==
 +
*1.MATRIX("pascal") =1
 +
*2.MATRIX("pascal",3)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1
 +
|-
 +
| 1 || 2 || 3
 +
|-
 +
| 1 || 3 || 6
 +
|}
 +
*3.MATRIX("pascal",5)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1 || 1 || 1
 +
|-
 +
| 1 || 2 || 3 || 4 || 5
 +
|-
 +
| 1 || 3 || 6 || 10 || 15
 +
|-
 +
| 1 || 4 || 10 || 20 || 35
 +
|-
 +
| 1 || 5 || 15 || 35 || 70
 +
|}
 +
 
 +
==See Also==
 +
*[[Manuals/calci/ANTIDIAGONAL| ANTIDIAGONAL]]
 +
*[[Manuals/calci/CONFERENCE| CONFERENCE]]
 +
*[[Manuals/calci/TRIANGULAR| TRIANGULAR]]
 +
 
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Pascal_matrix Pascal Matrix]

Latest revision as of 01:32, 26 October 2015

MATRIX("PASCAL",order)


  • is the size of the Pascal matrix.

Description

  • This function returns the matrix of any order with the property of Pascal.
  • The Pascal matrix is an infinite matrix containing the binomial coefficients as its elements.
  • To obtain a pascal matrix there are three ways: as either an upper-triangular matrix(U), a lower-triangular matrix(L), or a symmetric matrix(S).
  • Example for these matrices are

  • The amazing relationship of these matrices are:.
  • And its determinants also 1.i.e.,
  • The Pascal matrix can actually be constructed by taking the matrix exponential of a special subdiagonal or superdiagonal matrix.
  • The elements of the symmetric Pascal matrix are the binomial coefficients, i.e.

, where n=i+j, r=i.

  • In other words,

.

  • Here MATRIX("pascal") is showing the pascal matrix of order 3.
  • So users can change the order of the matrix also.

Examples

  • 1.MATRIX("pascal") =1
  • 2.MATRIX("pascal",3)
1 1 1
1 2 3
1 3 6
  • 3.MATRIX("pascal",5)
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

See Also

References