Difference between revisions of "Manuals/calci/TOEPLITZ"

From ZCubes Wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by 2 users not shown)
Line 8: Line 8:
 
<math>A_{i,j} = A_{i+1,j+1} = a_{i-j}</math>.
 
<math>A_{i,j} = A_{i+1,j+1} = a_{i-j}</math>.
 
*Any nxn matrix A of the form:
 
*Any nxn matrix A of the form:
<math>\begin{bmatrix}
 
a_0 & a_{-1} & a_{-2} & \cdots & a_{-n+1} \\
 
a_1 & a_0 & a_{-1} & \cdots  \\
 
a_2 & a_1 & \cdots \\
 
\vdots & \ddots & \vdots \\
 
0      & \cdots & 0
 
\end{bmatrix}</math>
 
 
<math>\begin{bmatrix}
 
<math>\begin{bmatrix}
 
   a_{0} & a_{-1} & a_{-2} & \ldots & \ldots  &a_{-n+1}  \\
 
   a_{0} & a_{-1} & a_{-2} & \ldots & \ldots  &a_{-n+1}  \\
Line 28: Line 21:
  
 
==Examples==
 
==Examples==
*MATRIX("toeplitz",15,1..10)
+
*MATRIX("toeplitz") =0.5239269779995084
 +
*MATRIX("toeplitz",3)
 +
{| class="wikitable"
 +
|-
 +
| 0.5852752963546664|| 0.5083035423886031 || 0.8240970941260457
 +
|-
 +
| 0.5852752963546664 || 0.5852752963546664 || 0.5083035423886031
 +
|-
 +
| 0.5083035423886031 || 0.5852752963546664 || 0.585275296354666
 +
|}
 +
*MATRIX("toeplitz",5,1..7)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 2 || 3 || 4 || 5
 +
|-
 +
| 6 || 1 || 2 || 3 || 4
 +
|-
 +
| 7 || 6 || 1 || 2 || 3
 +
|-
 +
| 1 || 7 || 6 || 1 || 2
 +
|-
 +
| 2 || 1 || 7 || 6 || 1
 +
|}
 +
*MATRIX("toeplitz",4,761..770)
 +
{| class="wikitable"
 +
|-
 +
| 761 || 762 || 763 || 764 
 +
|-
 +
| 765 || 761 || 762 || 763 
 +
|-
 +
| 766 || 765 || 761 || 762
 +
|-
 +
| 767 || 766 || 765 || 761
 +
|}
  
 +
==Related Videos==
  
A =
+
{{#ev:youtube|CgfkEUOFAj0|280|center|Toeplitz Matix}}
\begin{bmatrix}
+
 
  a_{0} & a_{-1} & a_{-2} & \ldots & \ldots  &a_{-n+1}  \\
+
==See Also==
  a_{1} & a_0  & a_{-1} &  \ddots  &  &  \vdots \\
+
*[[Manuals/calci/PERSYMMETRIC| PERSYMMETRIC]]
  a_{2}    & a_{1} & \ddots  & \ddots & \ddots& \vdots \\
+
*[[Manuals/calci/PASCAL| PASCAL]]
\vdots &  \ddots & \ddots &  \ddots  & a_{-1} & a_{-2}\\
+
*[[Manuals/calci/TRIANGULAR| TRIANGULAR]]
\vdots &        & \ddots & a_{1} & a_{0}&  a_{-1} \\
+
 
a_{n-1} &  \ldots & \ldots & a_{2} & a_{1} & a_{0}
+
==References==
\end{bmatrix}
+
*[http://en.wikipedia.org/wiki/Toeplitz_matrix Toeplitz Matrix]

Latest revision as of 01:43, 26 October 2015

MATRIX("TOEPLITZ",order)


  • is the size of the Toeplitz matrix.

Description

  • This function gives the matrix of order 3 with the property of toeplitz matrix.
  • A Toeplitz matrix is a matrix with the constant values along negative sloping diagonals(descending diagonal from left to right).
  • If the i,j element of A is denoted , then we have

.

  • Any nxn matrix A of the form:

  • The property of Toeplitz matrix is :Toeplitz matrices are persymmetric.
  • Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric.
  • Toeplitz matrices commute asymptotically.

Examples

  • MATRIX("toeplitz") =0.5239269779995084
  • MATRIX("toeplitz",3)
0.5852752963546664 0.5083035423886031 0.8240970941260457
0.5852752963546664 0.5852752963546664 0.5083035423886031
0.5083035423886031 0.5852752963546664 0.585275296354666
  • MATRIX("toeplitz",5,1..7)
1 2 3 4 5
6 1 2 3 4
7 6 1 2 3
1 7 6 1 2
2 1 7 6 1
  • MATRIX("toeplitz",4,761..770)
761 762 763 764
765 761 762 763
766 765 761 762
767 766 765 761

Related Videos

Toeplitz Matix

See Also

References