Difference between revisions of "Manuals/calci/POISSON"
Jump to navigation
Jump to search
(Created page with "==poisson") |
|||
Line 1: | Line 1: | ||
− | == | + | <div style="font-size:30px">'''POISSON(x,m,cu)'''</div><br/> |
+ | *<math>x</math> is the number of events. | ||
+ | *<math>m </math> is the mean | ||
+ | *<math>cu</math> is the logical value like TRUE or FALSE. | ||
+ | |||
+ | ==Description== | ||
+ | *This function gives the value of the Poisson distribution. | ||
+ | *The Poisson distribution is a discrete probability distribution for the counts of events that occur randomly in a given interval of time. | ||
+ | *It is is used to model the number of events occurring within a given time interval. | ||
+ | *In <math>POISSON(x,m,cu)</math>, <math>x</math> is the number of events in a given interval of time, <math>m </math> is the Average Numeric value and <math>cu</math> is the logical value. | ||
+ | *If it is TRUE, this function will give the Cumulative Poisson Probability with the number of random events between <math>0</math> and <math>x</math>(included). | ||
+ | *If it is FALSE, this function will give the Poisson Probability Mass function with the number of events occurring will be exactly <math>x</math>. | ||
+ | *The <math>POISSON</math>probability mass function is: | ||
+ | <math> f(x,\lambda)=\frac{\lambda^x.e^{-\lambda}}{x!}</math> | ||
+ | <math>x=0,1,2...</math> where <math> \lambda </math> is the shape parameter and <math>\lambda > 0</math>. <math>e</math> is the base of the natural logarithm (e=2.718282). | ||
+ | *The Cumulative Poisson Probability function is: | ||
+ | <math>F(k,\lambda)=\sum_{k=0}^x \frac{e^{-\lambda} .\lambda^k}{k!}</math>. | ||
+ | *This function will return the result as error when | ||
+ | 1.<math>x</math> or <math>m</math> is non-numeric. | ||
+ | 2.<math>x<0</math> or <math>m<0</math>. | ||
+ | |||
+ | ==Examples== | ||
+ | #POISSON(10,3,TRUE) = 0.9997076630493528 | ||
+ | #POISSON(10,3,FALSE) = 0.0008101511794681433 | ||
+ | #POISSON(21.7,7.54,TRUE) = 0.9999955033358848 | ||
+ | #POISSON(21.7,7.54,FALSE) = 0.00000948031184308478 | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/EXPONDIST | EXPONDIST ]] | ||
+ | |||
+ | ==References== | ||
+ | [http://en.wikipedia.org/wiki/Poisson_distribution Poisson distribution ] |
Revision as of 13:35, 15 December 2016
POISSON(x,m,cu)
- is the number of events.
- is the mean
- is the logical value like TRUE or FALSE.
Description
- This function gives the value of the Poisson distribution.
- The Poisson distribution is a discrete probability distribution for the counts of events that occur randomly in a given interval of time.
- It is is used to model the number of events occurring within a given time interval.
- In , is the number of events in a given interval of time, is the Average Numeric value and is the logical value.
- If it is TRUE, this function will give the Cumulative Poisson Probability with the number of random events between and (included).
- If it is FALSE, this function will give the Poisson Probability Mass function with the number of events occurring will be exactly .
- The probability mass function is:
where is the shape parameter and . is the base of the natural logarithm (e=2.718282).
- The Cumulative Poisson Probability function is:
.
- This function will return the result as error when
1. or is non-numeric. 2. or .
Examples
- POISSON(10,3,TRUE) = 0.9997076630493528
- POISSON(10,3,FALSE) = 0.0008101511794681433
- POISSON(21.7,7.54,TRUE) = 0.9999955033358848
- POISSON(21.7,7.54,FALSE) = 0.00000948031184308478