Difference between revisions of "Manuals/calci/SKEWSYMMETRIC"
Jump to navigation
Jump to search
Line 11: | Line 11: | ||
==Examples== | ==Examples== | ||
− | #SKEWSYMMETRIC(4) | + | #1. |
+ | SKEWSYMMETRIC(4) | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 22: | Line 23: | ||
|(-25) || -72 || -43 || 0 | |(-25) || -72 || -43 || 0 | ||
|} | |} | ||
+ | #2. | ||
+ | SKEWSYMMETRIC(9) | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | 0 || 48|| -36 || 72 || 25 ||51 ||-13 || -98 || 70 | ||
+ | |- | ||
+ | |(-48) || 0 || -97|| -33 || 78 || -30 || -56 || 62 || 45 | ||
+ | |- | ||
+ | |36|| 97 || 0 ||42 || -47 || 58 || 94 || 24 || -43 | ||
+ | |- | ||
+ | |(-72) || 33 || -42 || 0 || -23 || -77 || -80 || 69 || 70 | ||
+ | |- | ||
+ | | (-25) || -78 || 47 || 23 || 0 || -17 || 17 || -100 || 34 | ||
+ | |- | ||
+ | | (-51) || 30 || -58 || 77 || 17 || 0 || -43 || -67 || 0 | ||
+ | |- | ||
+ | |13 || 56 || -94 || 80 || -17 || 43 || 0 || -24 || 55 | ||
+ | |- | ||
+ | | 98 || -62 || -24 || -69 || 100 || 67 || 24 || 0 || 76 | ||
+ | |- | ||
+ | | (-70) || -45 || 43 || -70 || -34 || 0 || -55 || -76 || 0 | ||
+ | |} | ||
+ | 0 48 -36 72 25 51 -13 -98 70 | ||
+ | -48 0 -97 -33 78 -30 -56 62 45 | ||
+ | 36 97 0 42 -47 58 94 24 -43 | ||
+ | -72 33 -42 0 -23 -77 -80 69 70 | ||
+ | -25 -78 47 23 0 -17 17 -100 34 | ||
+ | -51 30 -58 77 17 0 -43 -67 0 | ||
+ | 13 56 -94 80 -17 43 0 -24 55 | ||
+ | 98 -62 -24 -69 100 67 24 0 76 | ||
+ | -70 -45 43 -70 -34 0 -55 -76 0 |
Revision as of 15:13, 20 December 2016
SKEWSYMMETRIC(Order)
- is the order of the skew symmetric matrix.
Description
- This function shows the Skew Symmetric matrix with the given order.
- Skew Symmetric is also called Anti Symmetric or Antimetric.
- A Skew Symmetric is a square matrix which satisfies the following identity ,where is the matrix transpose.
- If the entry in the row and column is .
- i.e. then the skew symmetric condition is Failed to parse (syntax error): {\displaystyle (a_{ij}) = −(a_{ij})} .
- So its diagonal values are "0".
Examples
- 1.
SKEWSYMMETRIC(4)
0 | -39 | 2 | 25 |
39 | 0 | 15 | 72 |
(-2) | -15 | 0 | 43 |
(-25) | -72 | -43 | 0 |
- 2.
SKEWSYMMETRIC(9)
0 | 48 | -36 | 72 | 25 | 51 | -13 | -98 | 70 |
(-48) | 0 | -97 | -33 | 78 | -30 | -56 | 62 | 45 |
36 | 97 | 0 | 42 | -47 | 58 | 94 | 24 | -43 |
(-72) | 33 | -42 | 0 | -23 | -77 | -80 | 69 | 70 |
(-25) | -78 | 47 | 23 | 0 | -17 | 17 | -100 | 34 |
(-51) | 30 | -58 | 77 | 17 | 0 | -43 | -67 | 0 |
13 | 56 | -94 | 80 | -17 | 43 | 0 | -24 | 55 |
98 | -62 | -24 | -69 | 100 | 67 | 24 | 0 | 76 |
(-70) | -45 | 43 | -70 | -34 | 0 | -55 | -76 | 0 |
0 48 -36 72 25 51 -13 -98 70 -48 0 -97 -33 78 -30 -56 62 45 36 97 0 42 -47 58 94 24 -43 -72 33 -42 0 -23 -77 -80 69 70 -25 -78 47 23 0 -17 17 -100 34 -51 30 -58 77 17 0 -43 -67 0 13 56 -94 80 -17 43 0 -24 55 98 -62 -24 -69 100 67 24 0 76 -70 -45 43 -70 -34 0 -55 -76 0