Difference between revisions of "Manuals/calci/SKEWSYMMETRIC"

From ZCubes Wiki
Jump to navigation Jump to search
Line 45: Line 45:
 
| (-70) || -45 || 43 || -70 || -34 || 0 || -55 || -76 || 0
 
| (-70) || -45 || 43 || -70 || -34 || 0 || -55 || -76 || 0
 
|}
 
|}
0 48 -36 72 25 51 -13 -98 70
+
 
-48 0 -97 -33 78 -30 -56 62 45
+
==See Also==
36 97 0 42 -47 58 94 24 -43
+
*[[Manuals/calci/KURT| KURT]]
-72 33 -42 0 -23 -77 -80 69 70
+
*[[Manuals/calci/STDEV  | STDEV ]]
-25 -78 47 23 0 -17 17 -100 34
+
*[[Manuals/calci/STDEVP | STDEVP ]]
-51 30 -58 77 17 0 -43 -67 0
+
 
13 56 -94 80 -17 43 0 -24 55
+
==References==
98 -62 -24 -69 100 67 24 0 76
+
*[http://en.wikipedia.org/wiki/Skewness Skewness]
-70 -45 43 -70 -34 0 -55 -76 0
 

Revision as of 15:22, 20 December 2016

SKEWSYMMETRIC(Order)


  • is the order of the skew symmetric matrix.

Description

  • This function shows the Skew Symmetric matrix with the given order.
  • Skew Symmetric is also called Anti Symmetric or Antimetric.
  • A Skew Symmetric is a square matrix which satisfies the following identity ,where is the matrix transpose.
  • If the entry in the row and column is .
  • i.e. then the skew symmetric condition is Failed to parse (syntax error): {\displaystyle (a_{ij}) = −(a_{ij})} .
  • So its diagonal values are "0".

Examples

1. SKEWSYMMETRIC(4)

0 -39 2 25
39 0 15 72
(-2) -15 0 43
(-25) -72 -43 0

2. SKEWSYMMETRIC(9)

0 48 -36 72 25 51 -13 -98 70
(-48) 0 -97 -33 78 -30 -56 62 45
36 97 0 42 -47 58 94 24 -43
(-72) 33 -42 0 -23 -77 -80 69 70
(-25) -78 47 23 0 -17 17 -100 34
(-51) 30 -58 77 17 0 -43 -67 0
13 56 -94 80 -17 43 0 -24 55
98 -62 -24 -69 100 67 24 0 76
(-70) -45 43 -70 -34 0 -55 -76 0

See Also

References