Difference between revisions of "Manuals/calci/ZTESTEQUALMEANS"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''ZTESTTWOSAMPLEFORMEANS('''Array1, Array2, Variance1, Variance2, Alpha, NewTableFlag) where, '''Array1 '''-...")
 
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''ZTESTTWOSAMPLEFORMEANS(ar1,ar2,v1,v2,md,alpha,lv)'''</div><br/>
 +
*<math>ar1</math> and  <math>ar2</math>  are  array of values.
 +
*<math>v1</math>  and <math>v2</math>  are value of variances.
 +
*<math>md</math> is the  Hypothesized Mean Difference.
 +
*<math>alpha</math> is the significance level.
 +
*<math>lv</math> is the logical value.
  
'''ZTESTTWOSAMPLEFORMEANS('''Array1, Array2, Variance1, Variance2, Alpha, NewTableFlag)
+
==Description==
 +
*This function gives the z-test two sample for means.
 +
*We can use this test when 
 +
1.The samples can be different sizes.
 +
2.The two samples are independent.
 +
3.Both populations are normally distributed or both sample sizes are large enough that the means are normally distributed.
 +
*In <math> ZTESTTWOSAMPLEFORMEANS(ar_1,ar_2,v_1,v_2,md,alpha,lv)</math>,<math> ar_1 </math> and <math>ar_2</math> are the set of values,<math>v_1</math> is the variance of <math>ar_1</math>,<math>v_2</math> is the variance of <math>ar_2</math>.
 +
*<math> md </math>  is the Hypothesized Mean Difference. If testing is for equal means,then <math>md = 0</math>.
 +
*<math>alpha</math> is the significance level which ranges from 0 to 1.
 +
*<math>lv</math> is the logical value like TRUE or FALSE.TRUE is indicating the result will display in new worksheet.
 +
*Suppose we are omitted the <math>lv</math> value it will consider the value as FALSE.
 +
*ZTEST two sample for means is calculated by:<math> z=\frac{\bar{x_1}-\bar{x_2}-\Delta}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}</math>
 +
where <math>\bar{x_1}</math> and <math>\bar{x_2}</math> are average of two samples, <math>\Delta</math> is the Hypothesized Mean Difference between two means of the population. <math>\sigma_1</math> and <math>\sigma_2</math> are the standard deviation of two population. <math>n_1</math> and <math>n_2</math> are the sizes of the samples.
 +
*This function will give the result as error when
 +
  1. any one of the argument is nonnumeric.
 +
  2. alpha>1
  
where,
+
==Examples==
 +
#'''Example 1'''
 +
{| class="wikitable"
 +
|+Spreadsheet
 +
|-
 +
! !! A !! B
 +
|-
 +
! 1
 +
| 70.25 || 90.02
 +
|-
 +
! 2
 +
| 82.87 || 89.45
 +
|-
 +
! 3
 +
| 90.17  || 70.89 
 +
|-
 +
! 4
 +
| 45.55 || 107.91
 +
|-
 +
! 5
 +
| 51.98 || 59.09
 +
|-
 +
! 6
 +
| 21.28 || 45.03
 +
|-
 +
! 7
 +
| 39.04 || 56.08
 +
|-
 +
! 8
 +
| 40.47 || 91
 +
|-
 +
! 9
 +
| 30.02 || 40.41
 +
|-
 +
! 10
 +
| 100.05 || 29.04
 +
|-
 +
! 11
 +
| 86.1 || 37.79
 +
|-
 +
! 12
 +
| 72.49 || 41.07
 +
|-
 +
! 13
 +
| 29.54 || 52.04
 +
|-
 +
! 14
 +
| 38.76 || 60.78
 +
|-
 +
! 15
 +
| 47.01 || 66.06
 +
|-
 +
! 16
 +
| 50.65 || 78.01
 +
|-
 +
! 17
 +
| 55.91 || 41.22
 +
|-
 +
! 18
 +
| 102.7 || 33.99
 +
|-
 +
! 19
 +
| 10 || 110.02
 +
|}
 +
#=ZTESTTWOSAMPLEFORMEANS(A1:A18,B1:B19,641.8474654,630.283176,0,0.5)
  
'''Array1 '''- Input range should be one block.
+
{| class="wikitable"
 
+
|+Result
'''Array2 '''- Input range should be one block.
+
|-
 
+
|+z-TEST: TWO SAMPLE FOR MEANS
'''Variance1 '''- Input range should be one block.
+
|-
 
+
! !! VARIABLE1 !!VARIABLE2
'''Variance2 '''- Input range should be one block.
+
|-
 
+
|MEAN || 56.04421052631579||63.152631578947364
'''HypothesizeDiff '''- represents the Hypothesized Mean Difference.A value 0 indicates that sample means are hypothesized to be equal.
+
|-
 
+
| KNOWN VARIANCE || 641.8474654||630.283176
'''Alpha '''- represents the significance level and value in range 0 to 1.
+
|-
 
+
|OBSERVATIONS ||19||19
''' ''''''NewTableFlag''' - is the TRUE or FALSE.If set as TRUE,the result in new sheet. If NewTableFlag is omitted, it assumed to be FALSE.</div>
+
|-
----
+
| HYPOTHESIZED MEAN DIFFERENCE ||0
<div id="1SpaceContent" class="zcontent" align="left">T-Test: Two Sample for unequal variances determines whether two sample means are distinct.</div>
+
|-
----
+
|z VALUE ||-0.8687285374505475
<div id="7SpaceContent" class="zcontent" align="left">
+
|-
 
+
| P(T<=+t) ONE-TAIL|| 0.1924981032229391
Lets see an example in (Column4Row5)
+
|-
 
+
|z CRITICAL ONE-TAIL || 0
<nowiki>=ZTESTTWOSAMPLESFORMEANS (R1C1:R4C1, R1C2:R4C2, R1C3:R4C3, R1C4:R4C3, 0, 0.05, TRUE)</nowiki>
+
|-
 
+
|P(T<=t) TWO-TAIL ||0.3849962064458782
ZTESTTWOSAMPLESFORMEANS returns the result in new sheet(5Space).
+
|-
 
+
|z CRITICAL TWO-TAIL|| 0.6744897501960817
<nowiki>=ZTESTTWOSAMPLESFORMEANS(R1C1:R4C1, R1C2:R4C2, R1C3:R4C3, R1C4:R4C3, 0, -0.055, TRUE)</nowiki>
+
|}
 
 
ZTESTTWOSAMPLESFORMEANS returns the #ERROR(Alpha = -0.055).
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
Z-TEST : TWO SAMPLE  FOR MEANS
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
  
If the Alpha &lt; 0 or Alpha &gt;1, ZTESTTWOSAMPLEFORMEANS returns the #ERROR.
+
==Related Videos==
  
</div>
+
{{#ev:youtube|gJZNpfrjYEA|280|center|Z-TEST Two Sample For Means}}
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
  
{| id="TABLE3" class="SpreadSheet blue"
+
==See Also==
|- class="even"
+
*[[Manuals/calci/ZTEST| ZTEST]]
| class=" " |
+
*[[Manuals/calci/TTEST| TTEST]]
| Column1
+
*[[Manuals/calci/TINV| TINV]]
| Column2
 
| class="  " | Column3
 
| class=" SelectTD1 ChangeBGColor SelectTD1" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]  </div>Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class=" " | 10
 
| class=" " | 3
 
| class=" " | 1
 
| class=" " | 8
 
|- class="even"
 
| class="  " | Row2
 
| class=" " | 7
 
| class=" " | 8
 
| class=" " | 2
 
| class=" " | 9
 
|- class="odd"
 
| Row3
 
| class=" " | 12
 
| class=" " | 8
 
| class=" " | 3
 
| class=" " | 10
 
|- class="even"
 
| Row4
 
| class=" " | 17
 
| class=" " | 18
 
| class=" " | 4
 
| class=" " | 11
 
|- class="odd"
 
| class=" " | Row5
 
| class=" " | 46
 
| class=" " | 34
 
| class="              SelectTD  " |
 
| class="sshl_f" | 5Space
 
|- class="even"
 
| Row6
 
| class=" sshl_f" | 6
 
| 7
 
| class="sshl_f" | #ERROR
 
| class="      " |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">
 
 
 
{| class="SpreadSheet blue"
 
|+ z-Test: Two Sample for Means<br />
 
|- class="even"
 
!
 
! Variable1
 
! Variable2
 
|- class="odd"
 
| Mean
 
| 11.5
 
| 9.25
 
|- class="even"
 
| Known Variance
 
| 1,2,3,4
 
| 8,9,10,11
 
|- class="odd"
 
| Observations
 
| 4
 
| 4
 
|- class="even"
 
| Hypothesized Mean Difference
 
| 0
 
|- class="odd"
 
| z Value
 
| NaN
 
|- class="even"
 
| P(T&lt;=t) One-tail
 
| 0
 
|- class="odd"
 
| z Critical One-tail
 
| 1.6448536269514715
 
|- class="even"
 
| P(T&lt;=t) Two-tail
 
| 0
 
|- class="odd"
 
| z Critical Two-tail
 
| 1.9599639845400536
 
|}
 
  
</div>
+
==References==
----
+
*[http://www.cliffsnotes.com/math/statistics/univariate-inferential-tests/two-sample-z-test-for-comparing-two-means  Ztest Comparing two means]

Latest revision as of 14:02, 16 January 2017

ZTESTTWOSAMPLEFORMEANS(ar1,ar2,v1,v2,md,alpha,lv)


  • and are array of values.
  • and are value of variances.
  • is the Hypothesized Mean Difference.
  • is the significance level.
  • is the logical value.

Description

  • This function gives the z-test two sample for means.
  • We can use this test when
1.The samples can be different sizes.
2.The two samples are independent.
3.Both populations are normally distributed or both sample sizes are large enough that the means are normally distributed.
  • In , and are the set of values, is the variance of , is the variance of .
  • is the Hypothesized Mean Difference. If testing is for equal means,then .
  • is the significance level which ranges from 0 to 1.
  • is the logical value like TRUE or FALSE.TRUE is indicating the result will display in new worksheet.
  • Suppose we are omitted the value it will consider the value as FALSE.
  • ZTEST two sample for means is calculated by:

where and are average of two samples, is the Hypothesized Mean Difference between two means of the population. and are the standard deviation of two population. and are the sizes of the samples.

  • This function will give the result as error when
 1. any one of the argument is nonnumeric.
 2. alpha>1

Examples

  1. Example 1
Spreadsheet
A B
1 70.25 90.02
2 82.87 89.45
3 90.17 70.89
4 45.55 107.91
5 51.98 59.09
6 21.28 45.03
7 39.04 56.08
8 40.47 91
9 30.02 40.41
10 100.05 29.04
11 86.1 37.79
12 72.49 41.07
13 29.54 52.04
14 38.76 60.78
15 47.01 66.06
16 50.65 78.01
17 55.91 41.22
18 102.7 33.99
19 10 110.02
  1. =ZTESTTWOSAMPLEFORMEANS(A1:A18,B1:B19,641.8474654,630.283176,0,0.5)
Result z-TEST: TWO SAMPLE FOR MEANS
VARIABLE1 VARIABLE2
MEAN 56.04421052631579 63.152631578947364
KNOWN VARIANCE 641.8474654 630.283176
OBSERVATIONS 19 19
HYPOTHESIZED MEAN DIFFERENCE 0
z VALUE -0.8687285374505475
P(T<=+t) ONE-TAIL 0.1924981032229391
z CRITICAL ONE-TAIL 0
P(T<=t) TWO-TAIL 0.3849962064458782
z CRITICAL TWO-TAIL 0.6744897501960817

Related Videos

Z-TEST Two Sample For Means

See Also

References