Difference between revisions of "Manuals/calci/MATRIXDETERMINANT"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''MATRIXDETERMINANT (a)'''</div><br/> *<math> a </math> is any square matrix. ==Description== *This function is calculating the determinant of th...")
 
Line 37: Line 37:
 
<math>|A|=\sum_{j=1}^n a_{ij} A_{ij}</math>, for any fixed <math>i</math>.
 
<math>|A|=\sum_{j=1}^n a_{ij} A_{ij}</math>, for any fixed <math>i</math>.
 
Also<math>|A|=\sum_{i=1}^n a_{ij} A_{ij}</math>, for any fixed <math>j</math>.
 
Also<math>|A|=\sum_{i=1}^n a_{ij} A_{ij}</math>, for any fixed <math>j</math>.
 +
 +
==Examples==
 +
#MATRIXDETERMINANT([[6,4,8],[3,6,1],[2,4,5]]) = 104.00000000000001
 +
#MATRIXDETERMINANT([[8,-4],[12,5]]) =88
 +
#MATRIXDETERMINANT([1,2,3,4;5,6,-7,8;12,10,-13,15;11,7,5,3]) = 1514
 +
 +
==See Also==
 +
*[[Manuals/calci/MINVERSE  | MINVERSE ]]
 +
*[[Manuals/calci/MMULT  | MMULT ]]
 +
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Determinant Determinant ]
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
*[[ Z3 |  Z3 home ]]

Revision as of 15:23, 14 June 2017

MATRIXDETERMINANT (a)


  • is any square matrix.

Description

  • This function is calculating the determinant of the given matrix.
  • In , is any square matrix.
  • The determinant of a matrix is a special number that can be calculated from a square matrix.
  • The determinant of a matrix is denoted by or .
  • Let be 2x2 matrix with the elements

  • Then , where all are real numbers.
  • Let be the 3x3 matrix with the elements

Then :

  • Let be a square matrix of order . Write ,
  • Where is the entry on the row and column and to & to .
  • For any and , set (called the co-factors), then the general formula for determinant of the matrix is,

, for any fixed . Also, for any fixed .

Examples

  1. MATRIXDETERMINANT([[6,4,8],[3,6,1],[2,4,5]]) = 104.00000000000001
  2. MATRIXDETERMINANT([[8,-4],[12,5]]) =88
  3. MATRIXDETERMINANT([1,2,3,4;5,6,-7,8;12,10,-13,15;11,7,5,3]) = 1514

See Also

References