Difference between revisions of "Manuals/calci/POINTAT"
Jump to navigation
Jump to search
(Created page with "<div style="font-size:30px">'''POINTAT (degrees,radius,cx,cy)'''</div><br/> *<math>degrees</math> is any degree value. *<math>radius</math> is the radius value of the circle. ...") |
|||
Line 8: | Line 8: | ||
*<math>Radius</math> is the radius of the circle. | *<math>Radius</math> is the radius of the circle. | ||
*Consider a circle centered at the origin with radius r, and marking the point on the circle indicated by some angle θ. | *Consider a circle centered at the origin with radius r, and marking the point on the circle indicated by some angle θ. | ||
− | *For the point (x, y) on a circle of radius r at an angle of <math>\theta</math>,the the function <math>SIN (\theta)</math>= <math>\frac{y}{r}</math> and <math>COS(\theta)</math>=<math>\frac{x}{r}. | + | *For the point (x, y) on a circle of radius r at an angle of <math>\theta</math>,the the function <math>SIN (\theta)</math>= <math>\frac{y}{r}</math> and <math>COS(\theta)</math>=<math>\frac{x}{r}</math>. |
*Using this function we can find the coordinates of the point on the circle is <math>x= rCos(\theta)</math> and <math>y= rSin(\theta)</math>. | *Using this function we can find the coordinates of the point on the circle is <math>x= rCos(\theta)</math> and <math>y= rSin(\theta)</math>. | ||
*On a unit circle, a circle with radius 1,<math>x=Cos(\theta)</math> and <math>y=Sin(\theta)</math>. | *On a unit circle, a circle with radius 1,<math>x=Cos(\theta)</math> and <math>y=Sin(\theta)</math>. |
Revision as of 17:00, 22 August 2017
POINTAT (degrees,radius,cx,cy)
- is any degree value.
- is the radius value of the circle.
Description
- This function used to find the points on the circle using radius of the circle and degree value.
- In , is any degree value.
- is the radius of the circle.
- Consider a circle centered at the origin with radius r, and marking the point on the circle indicated by some angle θ.
- For the point (x, y) on a circle of radius r at an angle of ,the the function = and =.
- Using this function we can find the coordinates of the point on the circle is and .
- On a unit circle, a circle with radius 1, and .