Difference between revisions of "Manuals/calci/QRDECOMPOSITION"

From ZCubes Wiki
Jump to navigation Jump to search
Line 36: Line 36:
 
|| -1.1102230246251565e-15 -8.825226081218279
 
|| -1.1102230246251565e-15 -8.825226081218279
 
|}
 
|}
2. QRDECOMPOSITION([[3,8,-5],[4,-6.3,9],[2,5,-1]])
+
 
 +
{| class="wikitable"
 +
|+Spreadsheet
 +
|-
 +
! !! A !! B !! C     
 +
|-
 +
! 1
 +
| 3 || 8 || -5
 +
|-
 +
|4 || -6.3 || 9
 +
|-
 +
!3
 +
|2 || 5 || -1
 +
|}
 +
=QRDECOMPOSITION(A1:B3)
 
{| border="1" cellpadding="5" cellspacing="0"
 
{| border="1" cellpadding="5" cellspacing="0"
 
|-
 
|-

Revision as of 06:51, 4 September 2017

QRDECOMPOSITION (Matrix)


  • is the set of values.

Description

  • This function gives the value of QR Decomposition.
  • In , is any matrix.
  • QR Decomposition is also called QR Factorization.
  • QR Decomposition is defined by the product of Orthogonal matrix and Upper Triangular matrix.
  • Consider any square matrix A may be decomposed as , where stands for orthogonal matrix and stands for Upper Triangular matrix.
  • An orthogonal matrix should satisfy , where is identity or Unitary matrix.
  • is the transpose matrix of Q.
  • If the given matrix A is non-singular, then this factorization is unique.
  • Gram-Schmidt process is one of the process of computing decomposition in QR Decomposition method.

Examples

Spreadsheet
A B
1 2 6
2 10 -15

=QRDECOMPOSITION(A1:B2)

 -0.19611613513818393   -0.9805806756909202
-0.9805806756909202 0.19611613513818393
-10.19803902718557	 13.5320133245347
-1.1102230246251565e-15 -8.825226081218279
Spreadsheet
A B C
1 3 8 -5
4 -6.3 9
3 2 5 -1

=QRDECOMPOSITION(A1:B3)

 -0.5570860145311556	0.631547425332445	-0.5392615524675877
-0.7427813527082074 -0.669329688618384 -0.01654176541311622 -0.3713906763541037 0.3913382392381005 0.841975859527614
-5.385164807134504 -1.634118975958056 -3.528211425363985
-2.1551618871879059e-16	11.22584763714588	-9.573042563465782
5.3446973501217775e-17	   0	1.7054560140922779

See Also


References