Difference between revisions of "Manuals/calci/IMSQRT"
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
*where x&y are the real numbers.<math>i</math> imaginary unit .<math>i=\sqrt{-1}</math>. | *where x&y are the real numbers.<math>i</math> imaginary unit .<math>i=\sqrt{-1}</math>. | ||
*The square root of a complex number is defined by: | *The square root of a complex number is defined by: | ||
− | <math>\sqrt{z}=\sqrt{x+iy}=\sqrt{r.e^{i\theta}}=\sqrt{{r}(cos(\frac{ | + | <math>\sqrt{z}=\sqrt{x+iy}=\sqrt{r.e^{i\theta}}=\sqrt{{r}(cos(\frac{\theta}{2})+isin(\frac{\theta}{2})}</math> |
*where <math>r</math> is the modulus of <math>z</math>. <math>r=\sqrt{x^2+y^2}</math> | *where <math>r</math> is the modulus of <math>z</math>. <math>r=\sqrt{x^2+y^2}</math> | ||
*And <math>\theta</math> is the argument of <math>z</math>. <math> θ=tan^{-1}(y/x)</math> also <math>θ∈(-\pi,\pi]</math>. | *And <math>\theta</math> is the argument of <math>z</math>. <math> θ=tan^{-1}(y/x)</math> also <math>θ∈(-\pi,\pi]</math>. |
Revision as of 13:08, 21 March 2018
IMSQRT(Complexnumber)
- is of the form
Description
- This function gives square root of a complex number.
- IMSQRT(z), where z is the complex number is in the form of "x+iy".
- where x&y are the real numbers. imaginary unit ..
- The square root of a complex number is defined by:
- where is the modulus of .
- And is the argument of . Failed to parse (syntax error): {\displaystyle θ=tan^{-1}(y/x)} also Failed to parse (syntax error): {\displaystyle θ∈(-\pi,\pi]} .
- We can use COMPLEX function to convert real and imaginary number in to a complex number.
ZOS
- The syntax is to calculate square root of a complex number in ZOS is .
- is of the form
- For e.g.,IMSQRT("9+10i")
- IMSQRT(IMSUB("9+10i","-2-3i"))
Examples
- =IMSQRT("2+3i")=1.67414922803554+0.895977476129838i
- =IMSQRT("-4-5i")=1.09615788950152-2.2806933416653i
- =IMSQRT("7")=2.64575131106459
- =IMSQRT("8i")=2+2i
Related Videos
See Also
References