Difference between revisions of "Manuals/calci/BINOMIAL"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''RANDOMNUMBERGENERATION'''(Number, RandomNumber, Distribution,  NewTableFlag, ProbabilityValue,Trials) where, ...")
 
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''BINOMIAL(N,K)'''</div><br/>
 +
*<math>N</math>  is the number of items.
 +
*<math>K </math> is the  number of selection.
  
'''RANDOMNUMBERGENERATION'''(Number, RandomNumber, Distribution,  NewTableFlag, ProbabilityValue,Trials)
 
  
where,
+
==Description==
 +
*This function gives the coefficent of the binomial distribution.
 +
*Binomial coefficient is the set of positive integer which equals the number of combinations of k items that can be selected from a set of n items.
 +
*The coefficients satisfy the Pascals recurrence.
 +
*The binomial coefficents are denoted by <math>\binom{n}{k}</math> and it is read by n choose k.
 +
*It is the coefficient of the <math>x^k</math> term in the polynomial expansion of the binomial thorem <math>(1 + x)^n</math>.
 +
*The coefficient is occur in the formula of binomial thorem:
 +
<math>(x+y)^n=\sum _{k=0}^n \binom{n}{k} x^{n-k} y^k</math> where <math> k\le n</math>.
 +
*To find the coefficient of the binomial ,we can use several methods.
 +
  1. Recursive formula
 +
  2. Multiplicative formula
 +
  3. Factorial formula.
 +
*1.Recursive Formula:
 +
<math>\binom{n}{k}= \binom{n-1}{k-1} +\binom{n-1}{k}</math>  for <math>n,k>0</math> and <math>1\le k\le n-1</math>.
 +
*2. Multiplicative formula:
 +
<math>\binom{n}{k}= \prod_{i=1}^k  \frac{n+1-i}{i}</math>
 +
*3.Factorial formula:
 +
<math>\binom{n}{k}= \frac{n!}{k!(n-k)!}</math> where <math>k\le n</math>,and which is zero when <math>k>n</math>.
 +
*Also  for the initial values <math> \binom{n}{0}=\binom{n}{n}=1 </math> for <math>n\ge 0</math>.
 +
*Most compact  formula for the coefficient of the binomial value is Factorial formula.
 +
*Factorial formula is symmetric of the combination formula.
  
'''Number '''- represents the number of variables.
+
==ZOS==
  
'''RandomNumber '''- represents the number of random number
+
*The syntax is to calculate BINOMIAL in ZOS is <math>BINOMIAL (N,K)</math>.
 +
**<math>N</math>  is the number of items.
 +
**<math>K</math> is the  number of selection.
 +
*For e.g., BINOMIAL(20..25,4)
 +
*BINOMIAL(10..14,7..8)
  
'''Distribution '''- represents the distribution method(i.e binomial) to create random values.
+
==Examples==
 +
#=BINOMIAL(10,3)= 120
 +
#=BINOMIAL(20,7)= 77520
 +
#=BINOMIAL(15,0)= 1
 +
#=BINOMIAL(12,12)=1
 +
#=BINOMIAL(1,-1) = 0
  
'''NewTableFlag''' - is the TRUE or FALSE.If set as TRUE,the result in new sheet. If NewTableFlag is omitted, it assumed to be FALSE.
+
==Related Videos==
  
'''ProbabilityValue '''- represents the probability value and should be in range 0 to 1.
+
{{#ev:youtube|tWIa6Dovirs|280|center|BINOMIAL}}
  
'''Trails''' - represents the number of trials.
+
==See Also==
 +
*[[Manuals/calci/BINOMDIST  | BINOMDIST ]]
 +
*[[Manuals/calci/BINOMDIST  | BINOMIALDIST ]]
  
</div>
+
==References==
----
+
*[http://en.wikipedia.org/wiki/Binomial_distribution Binomial Distribution]
<div id="1SpaceContent" class="zcontent" align="left">The frequency distribution of the probability of a specified number of successes is an arbitrary number of repeated independent Bernoulli trials.</div>
+
*[http://en.wikipedia.org/wiki/Binomial_coefficient Binomial Coefficient]
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
  
Lets see an example in (Column1Row1)
 
  
<nowiki>=RANDOMNUMBERGENERATION(3, 4, "Binomial", TRUE, 0.5)</nowiki>
+
*[[Z_API_Functions | List of Main Z Functions]]
  
RANDOMNUMBERGENERATION returns the result in new sheet(9Space).
+
*[[ Z3 |   Z3 home ]]
 
 
<nowiki>=RANDOMNUMBERGENERATION(5, 4, "Binomial", TRUE, 0.3, -1)</nowiki>
 
 
 
RANDOMNUMBERGENERATION returns the #ERROR(Trails &lt; 0).
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
RANDOM NUMBER GENERATION : BINOMIAL
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
If Number &lt; 0 or RandomNumber &lt; 0, RANDOMNUMBERGENERATION returns the #ERROR.
 
 
 
RANDOMNUMBERGENERATION returns the #ERROR, if Trails &lt; 0.
 
 
 
</div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|+ Random Number Generation<br />Binomial Distribution
 
|- class="even"
 
| 0
 
| 1
 
| 1
 
|- class="odd"
 
| 1
 
| 0
 
| 2
 
|- class="even"
 
| 0
 
| 2
 
| 1
 
|- class="odd"
 
| 1
 
| 1
 
| 1
 
|}
 
 
 
</div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|+ Default Calci
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 9Space
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| class="  " | Row2
 
| class="          " |
 
| class=" " |
 
| class=" " |
 
| class="  sshl_f " |
 
|- class="odd"
 
| Row3
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class="  sshl_f " |
 
|- class="even"
 
| class=" " | Row4
 
| class="sshl_f" | #ERROR
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="odd"
 
| class=" " | Row5
 
| class="  SelectTD1 ChangeBGColor SelectTD1" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]  </div>
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| Row6
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|}
 
 
 
{|
 
| <span align="left">[[Image:calci1.gif]]</span>
 
|
 
|
 
[[Image:bold.gif]]
 
|
 
[[Image:italic.gif]]
 
|
 
[[Image:normal.gif]]
 
|
 
[[Image:underline.gif]]
 
|
 
[[Image:border.gif]]
 
|
 
[[Image:numbers.gif]]
 
|
 
[[Image:sort.gif]]
 
|
 
[[Image:formatcells.gif]]
 
|
 
[[Image:graphs.gif]]
 
| $
 
|}
 
 
 
</div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left">
 
 
 
{| class="SpreadSheet blue"
 
|+ Random Number Generation<br />Binomial Distribution
 
|- class="even"
 
| 0
 
| 0
 
| 0
 
|- class="odd"
 
| 1
 
| 1
 
| 3
 
|- class="even"
 
| 1
 
| 1
 
| 3
 
|- class="odd"
 
| 0
 
| 0
 
| 1
 
|}
 
 
 
</div>
 
----
 

Latest revision as of 14:11, 5 June 2018

BINOMIAL(N,K)


  • is the number of items.
  • is the number of selection.


Description

  • This function gives the coefficent of the binomial distribution.
  • Binomial coefficient is the set of positive integer which equals the number of combinations of k items that can be selected from a set of n items.
  • The coefficients satisfy the Pascals recurrence.
  • The binomial coefficents are denoted by and it is read by n choose k.
  • It is the coefficient of the term in the polynomial expansion of the binomial thorem .
  • The coefficient is occur in the formula of binomial thorem:
 where . 
  • To find the coefficient of the binomial ,we can use several methods.
  1. Recursive formula 
  2. Multiplicative formula 
  3. Factorial formula.
  • 1.Recursive Formula:
  for  and .
  • 2. Multiplicative formula:

  • 3.Factorial formula:

where ,and which is zero when .

  • Also for the initial values for .
  • Most compact formula for the coefficient of the binomial value is Factorial formula.
  • Factorial formula is symmetric of the combination formula.

ZOS

  • The syntax is to calculate BINOMIAL in ZOS is .
    • is the number of items.
    • is the number of selection.
  • For e.g., BINOMIAL(20..25,4)
  • BINOMIAL(10..14,7..8)

Examples

  1. =BINOMIAL(10,3)= 120
  2. =BINOMIAL(20,7)= 77520
  3. =BINOMIAL(15,0)= 1
  4. =BINOMIAL(12,12)=1
  5. =BINOMIAL(1,-1) = 0

Related Videos

BINOMIAL

See Also

References