Difference between revisions of "Manuals/calci/BETAINV"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<div style="font-size:30px">'''BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)'''</div><br/>
+
<div style="font-size:25px">'''BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)'''</div><br/>
 
*<math>Probability</math> is the probability value associated with the beta distribution.  
 
*<math>Probability</math> is the probability value associated with the beta distribution.  
 
*<math>Alpha</math> & <math>Beta</math> are the values of  the shape parameter.
 
*<math>Alpha</math> & <math>Beta</math> are the values of  the shape parameter.
Line 9: Line 9:
 
*In <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)</math>, <math>Probability</math> is the probability value associated with Beta Distribution, <math>Alpha</math> and <math>Beta</math> are the values of two positive shape parameters and <math>LowerBound</math> and <math>UpperBound</math> are the lower and upper limit.
 
*In <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)</math>, <math>Probability</math> is the probability value associated with Beta Distribution, <math>Alpha</math> and <math>Beta</math> are the values of two positive shape parameters and <math>LowerBound</math> and <math>UpperBound</math> are the lower and upper limit.
 
*Normally the limit values are optional, i.e. when we are giving the values of <math>LowerBound</math>&<math>UpperBound</math> then the result value is from <math>a</math> and <math>b</math>.
 
*Normally the limit values are optional, i.e. when we are giving the values of <math>LowerBound</math>&<math>UpperBound</math> then the result value is from <math>a</math> and <math>b</math>.
*When we are omitting the values <math>a</math> and <math>b</math>, by default it will consider <math>a=0</math> and <math>b=1</math>, so the result value is from <math>0</math> and <math>1</math>.
+
*When we are omitting the values <math>LowerBound</math> and <math>UpperBound</math>, by default it will consider <math>LowerBound=0</math> and <math>UpperBound=1</math>, so the result value is from <math>0</math> and <math>1</math>.
 
*If <math>BETADIST (Number,Alpha,Beta,LowerBound,UpperBound)=Probability</math>, then <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)=x</math>.  
 
*If <math>BETADIST (Number,Alpha,Beta,LowerBound,UpperBound)=Probability</math>, then <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)=x</math>.  
 
*<math>BETAINV</math> use the iterating method to find the value of <math>x</math>.suppose the iteration has not converged after 100 searches, then the function gives the error result.  
 
*<math>BETAINV</math> use the iterating method to find the value of <math>x</math>.suppose the iteration has not converged after 100 searches, then the function gives the error result.  
 
*This function will give the error result when   
 
*This function will give the error result when   
 
  1.Any one of the arguments are non-numeric
 
  1.Any one of the arguments are non-numeric
  2.<math>Alpha</math> or <math>Beta \le 0 </math>
+
  2.Alpha or Beta <math>\le</math> 0
  3.<math>Number<LowerBound ,Number>UpperBound</math> or LowerBound = UpperBound
+
  3.Number<LowerBound ,Number>UpperBound or LowerBound = UpperBound
  4.we are not mentioning the limit values  for <math>LowerBound</math>&<math>UpperBound</math>,  
+
  4.we are not mentioning the limit values  for LowerBound & UpperBound ,  
 
   by default it will consider the Standard Cumulative Beta Distribution, LowerBound = 0 and UpperBound = 1
 
   by default it will consider the Standard Cumulative Beta Distribution, LowerBound = 0 and UpperBound = 1
  

Revision as of 16:35, 12 June 2018

BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)


  • is the probability value associated with the beta distribution.
  • & are the values of the shape parameter.
  • & the lower and upper limit to the interval of .

Description

  • This function gives the inverse value of Cumulative Beta Probability Distribution.
  • It is called Inverted Beta Function or Beta Prime.
  • In , is the probability value associated with Beta Distribution, and are the values of two positive shape parameters and and are the lower and upper limit.
  • Normally the limit values are optional, i.e. when we are giving the values of & then the result value is from and .
  • When we are omitting the values and , by default it will consider and , so the result value is from and .
  • If , then .
  • use the iterating method to find the value of .suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • This function will give the error result when
1.Any one of the arguments are non-numeric
2.Alpha or Beta  0 
3.Number<LowerBound ,Number>UpperBound or LowerBound = UpperBound
4.we are not mentioning the limit values  for LowerBound & UpperBound , 
  by default it will consider the Standard Cumulative Beta Distribution, LowerBound = 0 and UpperBound = 1

ZOS

  • The syntax is to calculate of this function in ZOS is .
    • is the probability value associated with the beta distribution.
    • and are the values of the shape parameter.
    • For e.g.,BETAINV(0.30987,10,18,12,16)

Examples

  1. BETAINV(0.2060381025,5,9,2,6) = 3
  2. BETAINV(0.359492343,8,10) = 1.75
  3. BETAINV(0.685470581,5,8,2,6) = 3.75
  4. BETAINV(0.75267,1,7,7,9) = 7.25
  5. BETAINV(0.5689,-2,4,3,5) = NAN, because .

Related Videos

Beta Inverse Distribution

See Also

References

Beta Distribution