Difference between revisions of "Manuals/calci/MANNWHITNEYUTEST"
Jump to navigation
Jump to search
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:25px">'''MANNWHITNEYUTEST( | + | <div style="font-size:25px">'''MANNWHITNEYUTEST (XRange,YRange,ConfidenceLevel,NewTableFlag)'''</div><br/> |
− | *<math> | + | *<math>XRange</math> is the array of x values. |
− | *<math> | + | *<math>YRange</math> is the array of y values. |
− | *<math> | + | *<math>ConfidenceLevel</math> is the value between 0 and 1. |
− | *<math> | + | *<math>NewTableFlag</math> is either TRUE or FALSE. |
− | + | ||
==Description== | ==Description== | ||
Line 140: | Line 140: | ||
*[http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test Mann-Whitney U test documentation on Wikipedia] | *[http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test Mann-Whitney U test documentation on Wikipedia] | ||
*[http://www.qimacros.com/hypothesis-testing/mann-whitney-test-excel/ Mann-Whitney test for independent samples in Excel] | *[http://www.qimacros.com/hypothesis-testing/mann-whitney-test-excel/ Mann-Whitney test for independent samples in Excel] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 16:35, 14 June 2018
MANNWHITNEYUTEST (XRange,YRange,ConfidenceLevel,NewTableFlag)
- is the array of x values.
- is the array of y values.
- is the value between 0 and 1.
- is either TRUE or FALSE.
Description
- This function gives the test statistic value of the Mann Whitey U test.
- It is one type of Non parametric test.It is also called Mann–Whitney–Wilcoxon,Wilcoxon rank-sum test or Wilcoxon–Mann–Whitney test.
- Using this test we can analyze rank-ordered data.
- This test is alternative to the independent-sample, Student t test, and yields results identical to those obtained from the Wilcoxon Two Independent Samples Test.
- This test is used to compare differences between two independent groups when the dependent variable is either ordinal or continuous, but not normally distributed.
- Mann whitey u test is having the following properties:
- 1.Data points should be independent from each other.
- 2.Data do not have to be normal and variances do not have to be equal.
- 3.All individuals must be selected at random from the population.
- 4.All individuals must have equal chance of being selected.
- 5.Sample sizes should be as equal as possible but for some differences are allowed.
- Suppose the two groups of the populations have distributions with the same shape it can be viewed as a comparison of two medians.With out the assumption the Mann-Whitney test does not compare medians.
- To find statistic value of this test the steps are required:
- 1.For the two observations of values, find the rank all together.
- 2.Add up all the ranks in a first observation.
- 3.Add up all the ranks in a second group.
- 4.Select the larger rank.
- 5.Calculate the number of participants,number of people in each group.
- 6.Calculate the test statistic:
- where and are number of participants and number of people.
- is the larger rank total. is the similar value of .
- 7.State Result: In this step we have to take a decision of null hypothesis either accept or reject depending on the z value using critical value table.
- 8.State Conclusion: To be significant, our obtained U has to be equal to or LESS than this critical value.
Example
X | Y |
87 | 71 |
72 | 42 |
94 | 69 |
49 | 97 |
56 | 78 |
88 | 84 |
74 | 57 |
61 | 64 |
80 | 78 |
52 | 73 |
75 | 85 |
0 | 91 |
- =MANNWHITNEYUTEST(A1:A12,B1:B12,0.05,true)
Mann Whitney U Test
x | y |
---|---|
20 | 10 |
11 | 2 |
23 | 9 |
3 | 24 |
5 | 15.5 |
21 | 18 |
13 | 6 |
7 | 8 |
17 | 15.5 |
4 | 12 |
14 | 19 |
1 | 22 |
Ranks | 139 | 161 |
Median | 73 | 75.5 |
n | 12 | 12 |
U1 | 83 |
U2 | 61 |
U | 61 |
E(U1) | 150 |
E(U2) | 150 |
E(U) | 72 |
StDdev | 17.320508075688775 |
0.05 | |
z | -0.6350852961085883 |
p | 0.5253738185447192 |
Related Videos
See Also
References