Difference between revisions of "Manuals/calci/STEYX"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''STEYX'''</font></font></font><font color="#48484...")
 
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''STEYX'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(A</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''Y'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">, A</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''X'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''Where AY is the Array or range of dependent data points and AX is the independent data points.'''</font></font></font></div>
+
<div style="font-size:30px">'''STEYX (KnownYs,KnownXs) '''</div><br/>
----
+
*<math>KnownYs</math> is set of dependent values.
<div id="1SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates the amount of error of the predicted y values for an individual x.</font></font></font></div>
+
*<math>KnownXs </math> is the set of independent values.
----
+
**STEYX(),returns the standard error of the predicted y-value for each x in the regression.
<div id="7SpaceContent" class="zcontent" align="left"> 
 
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The Arguments can be numbers or names, arrays, or references. </font></font></font>
+
==Description==
 +
*This function gives the standard error of the regression, which also is known as the standard error of the estimate.
 +
*It is calculates the  standard error for the straight line of best fit through a supplied set of <math> KnownXs</math> and <math> KnownYs</math> values.
 +
*The standard error for this line provides a measure of the error in the prediction of <math> KnownYs </math> for an individual <math> KnownXs </math>.
 +
*The equation for the standard error of the predicted <math> y </math> is:
 +
<math>\sqrt{\frac{1}{(n-2)}\left [ \sum(y-\bar{y})^2-\frac{[\sum(x-\bar{x})(y-\bar{y})]^2}{\sum(x-\bar{x})^2} \right ]}</math>
 +
where <math>\bar{x}</math> and <math>\bar{y}</math> are the sample mean <math> x </math> and <math> y </math>.
 +
*In <math>STEYX (KnownYs,KnownXs)</math>, <math>KnownYs </math> is the array of the numeric dependent values and <math> KnownXs </math> is the array of the independent values. 
 +
*The arguments can be be either numbers or names, array,constants or references that contain numbers.
 +
*Suppose the array contains text,logical values or empty cells, like that values are not considered.
 +
*This function will return the result as error when
 +
  1. Any one of the argument is non-numeric.
 +
  2. KnownYs and KnownXs are empty or that have less than three data points.
 +
  3. KnownYs and KnownXs  have a different number of data points.
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">Empty cells, logical values, text, or error values are ignored. STEYX shows error value when AY and AX are empty or have less than three </font></font></font>
+
==Examples==
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">data points.</font></font></font>
+
1.
 +
{| class="wikitable"
 +
|+Spreadsheet
 +
|-
 +
! !! A !! B !! C !! D!! E !!F
 +
|-
 +
! 1
 +
| 6 || 8 || 10 ||13 || 15 ||5
 +
|-
 +
! 2
 +
| 1 || 4 || 8 || 11 || 20 ||3
 +
|}
  
<br /><br />
+
=STEYX(A1:F1,A2:F2) = 1.4525201161135368
 +
2.
 +
{| class="wikitable"
 +
|+Spreadsheet
 +
|-
 +
! !! A !! B !! C !! D!! E
 +
|-
 +
! 1
 +
| 2 || 9 || 1 ||8 || 17
 +
|-
 +
! 2
 +
| 10 || 4 || 11 || 2 || 6
 +
|}
  
</div>
+
=STEYX(A1:E1,A2:E2)) = 5.944184833375669
----
+
3.
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
{| class="wikitable"
 +
|+Spreadsheet
 +
|-
 +
! !! A !! B !! C !! D!! E
 +
|-
 +
! 1
 +
| 1 || 2 || 4 ||5 || 8
 +
|-
 +
! 2
 +
| 10 || 4 || 7 || 5 ||
 +
|}
  
STEYX
+
=STEYX(A1:A5,B1:B4) = NAN
  
</div></div>
+
==Related Videos==
----
 
<div id="8SpaceContent" class="zcontent" align="left"><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''B C'''</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''25 15'''</font></font></font>
+
{{#ev:youtube|npmg9yvkz3g|280|center|Standard Error Of Estimate}}
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''10 16'''</font></font></font>
+
==See Also==
 +
*[[Manuals/calci/INTERCEPT | INTERCEPT]]
 +
*[[Manuals/calci/LINEST  | LINEST ]]
 +
*[[Manuals/calci/PEARSON  | PEARSON ]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''12 11'''</font></font></font>
+
==References==
 +
*[http://www.ncssm.edu/courses/math/Talks/PDFS/Standard%20Errors%20for%20Regression%20Equations.pdf Standard Error]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''18 20'''</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''28 25'''</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''<nowiki>=STEYX(B2:B6,C2:C6) is 6.9</nowiki>'''</font></font></font>
 
  
</div>
+
*[[Z_API_Functions | List of Main Z Functions]]
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 25
 
| class="sshl_f " | 15
 
| class="sshl_f" | 6.895143
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 10
 
| class="sshl_f" | 16
 
| class="sshl_f SelectTD ChangeBGColor SelectTD" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]</div>
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 12
 
| class="sshl_f" | 11
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" | 18
 
| class="sshl_f" | 20
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class=" " | 28
 
| class="sshl_f " | 25
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |  Z3 home ]]
----
 

Latest revision as of 13:58, 18 June 2018

STEYX (KnownYs,KnownXs)


  • is set of dependent values.
  • is the set of independent values.
    • STEYX(),returns the standard error of the predicted y-value for each x in the regression.

Description

  • This function gives the standard error of the regression, which also is known as the standard error of the estimate.
  • It is calculates the standard error for the straight line of best fit through a supplied set of and values.
  • The standard error for this line provides a measure of the error in the prediction of for an individual .
  • The equation for the standard error of the predicted is:

where and are the sample mean and .

  • In , is the array of the numeric dependent values and is the array of the independent values.
  • The arguments can be be either numbers or names, array,constants or references that contain numbers.
  • Suppose the array contains text,logical values or empty cells, like that values are not considered.
  • This function will return the result as error when
  1. Any one of the argument is non-numeric. 
  2. KnownYs and KnownXs are empty or that have less than three data points.
  3. KnownYs and KnownXs  have a different number of data points.

Examples

1.

Spreadsheet
A B C D E F
1 6 8 10 13 15 5
2 1 4 8 11 20 3
=STEYX(A1:F1,A2:F2) = 1.4525201161135368

2.

Spreadsheet
A B C D E
1 2 9 1 8 17
2 10 4 11 2 6
=STEYX(A1:E1,A2:E2)) = 5.944184833375669

3.

Spreadsheet
A B C D E
1 1 2 4 5 8
2 10 4 7 5
=STEYX(A1:A5,B1:B4) = NAN

Related Videos

Standard Error Of Estimate

See Also

References