Difference between revisions of "Manuals/calci/IMREAL"

From ZCubes Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''IMREAL(z)'''</div><br/>
+
<div style="font-size:30px">'''IMREAL (ComplexNumber)'''</div><br/>
*<math>z</math> is the complex number is of the form <math>x+iy</math>
+
*<math>ComplexNumber</math> is of the form <math>z=x+iy</math>.
 +
**IMREAL(),returns the real coefficient of a complex number.
  
 
==Description==
 
==Description==
 
*This function gives the real coefficient of the complex number.
 
*This function gives the real coefficient of the complex number.
*IMREAL(z), <math>z</math>  is  the complex number is in the form of <math>x+iy</math>
+
*In <math>IMREAL(ComplexNumber)</math>, ComplexNumber is in the form of <math>z=x+iy</math>
 
* where <math>x</math> & <math>y</math> are the real numbers. <math>i</math> imaginary unit. <math>i=\sqrt{-1}</math>.  
 
* where <math>x</math> & <math>y</math> are the real numbers. <math>i</math> imaginary unit. <math>i=\sqrt{-1}</math>.  
 
*The complex number <math>z= x+iy</math> can be identified by <math>(x,y)</math> in the complex plane.  
 
*The complex number <math>z= x+iy</math> can be identified by <math>(x,y)</math> in the complex plane.  
Line 10: Line 11:
 
*This function shows the value of the real part of <math>z</math>.
 
*This function shows the value of the real part of <math>z</math>.
 
*A complex is said to be purely imaginary when <math>x=0</math> and it is a real number when <math>y=0</math>.
 
*A complex is said to be purely imaginary when <math>x=0</math> and it is a real number when <math>y=0</math>.
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
+
*We can use [[Manuals/calci/COMPLEX| COMPLEX]]  function to convert real and imaginary number in to a complex number.
 +
 
 +
==ZOS==
 +
*The syntax is to calculate real coefficient of the complex number in ZOS is <math>IMREAL(ComplexNumber)</math>.
 +
**<math>ComplexNumber</math> is of the form <math>z=x+iy</math>.
 +
*For e.g.,IMREAL(IMSUM("2+3i","1-9i"))
  
 
==Examples==
 
==Examples==
  
#IMREAL("3+4i")=3
+
#=IMREAL("3+4i") = 3
#IMREAL("-5+6i")=-5
+
#=IMREAL("-5+6i") = -5
#IMREAL("8")=8
+
#=IMREAL("8") = 8
#IMREAL("-2i")=0
+
#=IMREAL("-2i") = 0
 +
 
 +
==Related Videos==
  
 +
{{#ev:youtube|A_ESfuN1Pkg|280|center|IMREAL}}
  
 
==See Also==
 
==See Also==
Line 25: Line 34:
 
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
 
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
 
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
 
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
 +
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Imaginary_number  Imaginary number]
 +
*[http://en.wikipedia.org/wiki/Real_number  Real number]
  
  
==References==
+
 
[http://en.wikipedia.org/wiki/Binary_logarithm  Binary Logarithm]
+
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 14:34, 18 July 2018

IMREAL (ComplexNumber)


  • is of the form .
    • IMREAL(),returns the real coefficient of a complex number.

Description

  • This function gives the real coefficient of the complex number.
  • In , ComplexNumber is in the form of
  • where & are the real numbers. imaginary unit. .
  • The complex number can be identified by in the complex plane.
  • Here is called real part and is the imaginary part of .
  • This function shows the value of the real part of .
  • A complex is said to be purely imaginary when and it is a real number when .
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS

  • The syntax is to calculate real coefficient of the complex number in ZOS is .
    • is of the form .
  • For e.g.,IMREAL(IMSUM("2+3i","1-9i"))

Examples

  1. =IMREAL("3+4i") = 3
  2. =IMREAL("-5+6i") = -5
  3. =IMREAL("8") = 8
  4. =IMREAL("-2i") = 0

Related Videos

IMREAL

See Also

References